
Describe the real-world problem

Farm dams ll

Example problem
Level: Senior secondary 

Senior modelling

Farmers get their feet wet
In a dry country like Australia, farm dams are part 
of the lifeblood of rural life. Knowing the volume 
of water at any time is important for planning 
the numbers and distribution of livestock, and 
estimating when the supply is likely to run out 
under drought conditions. 
Methods of estimating the volume of a partly 
empty dam depend on interpreting physically 
observable signs. If depth markers are embedded 
when the dam is excavated, the volume can be 
estimated from the water level measured on the 
marker. If dams do not have markers, some other 
method is needed. 

Dams lose water by evaporation from the water 
surface to the atmosphere. Annual average 
evaporation rates are estimated using data 
collected from locations throughout the country. 
They vary from about 100 cm in western 
Tasmania up to 400 cm in the desert regions of 
northern Australia. Values in Victoria vary from 
about 140 cm in the south to 180 cm in the north, 
according to the Bureau of Meteorology  
(http://www.bom.gov.au/watl/evaporation).  
Loss of water by seepage is negligible.

Livestock water requirements
The table, containing data from a primary industries website, 
shows water requirements for a variety of farm animals. It 
contains information that farmers would know for their own 
stock, and is provided as a resource for this problem. 

Stock Litres/animal/year
Sheep
nursing ewes on dry feed 3300
fat lambs on dry pasture 800
mature sheep — dry pasture 2500
fat lambs — irrigated pasture 400
mature sheep — irrigated pasture 1300
Cattle
dairy cows, dry 16 000
dairy cows, milking 25 000
beef cattle 16 000
calves 8000

Table 1 Livestock water requirements
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Specify the mathematical problems
The dam (Figure 1) has been excavated in the shape of an 
inverted spherical cap AMB – so that its cross-section is circular 
whatever the depth of water, and stock can drink from any point 
on its perimeter. The diameter of the dam when full (AB) is 30 
metres, and its depth when full is 2 metres. The figure shows 
cross-sections of the dam, and of the hemisphere SMT of which 
it is a part. PMD is a representative section of the partly filled dam 
of radius ‘x’ and depth ‘h’.

Problem a: Model for dam volume
Find a way of estimating the volume of water in the dam when 
the (unknown) depth of water is ‘h’.

Problem b: Model for water loss over time 
Suppose the dam is in central Victoria. If the dam is full and no more 
rain falls, how many days it would take for the dam to dry up? 

Now suppose that a flock of 300 mature sheep on dry pasture 
is sustained by the dam. If the dam is full and no more rain falls, 
how long will it be before other arrangements need to be made 
for the stock?

Formulate the mathematical model (a) for  
dam volume
Discussion with students can be used to identify variables and 
measurements that will be needed to address the problem. Only 
data that can be accessed are useful, and the depth of water 
is not one of these. One readily obtainable piece of data is the 
distance the water surface has receded from its position when 
the dam is full — a distance obtained simply by stepping out 
the distance taken to walk from the edge of the dam, directly to 
the current water level. A key insight is the recognition that this 
distance (s) is both measurable, and a key input to the model. 

Assumptions
■■ Water in the dam is reduced by evaporation and in providing 

for livestock. Seepage loss is negligible and can be ignored.
■■ Dams whose surfaces are bounded by curved perimeters 

and with access for animals can be represented by circular 
or elliptical approximations.

■■ The dimensions of the dam when empty (as excavated)  
are known.

Model for dam volume
The aim is to create a formula that enables the volume to be 
estimated in terms of the arc length AP(s) which we can measure 
by stepping to the edge of the water, from the high water mark 
when the dam is full. (The distance ‘s’ needs to be related to the 
depth of water ‘h’ which cannot be measured directly.) 

The volume of the cap of a sphere of depth ‘h’ is given by the 
formula V = πh2(3R − h)/3, where R is the radius of the parent 
sphere. (This result can be provided after students have identified 
a need for it, or can otherwise be obtained as an application of 
integral calculus.)

From Figure 1 we have from triangle OAC: 
R2 = r2 + (R − d)2 so R = (r2 + d2)/2d
r = 15 and d = 2 gives R = 57.25. 

Then V (full dam) = πd2(3R − d)/3 = 710m3 (approx.) = 710 000 litres.

Similarly, from triangle OPQ: 
R2 = x2 + (R − h)2 so that x2 = 2Rh − h2 

This links the radius of the water surface and depth, when the 
dam is partly filled, that is, for various values of ‘h’. 

So we know how to calculate V when ‘h’ is known from  
V = πh2 (3R − h)/3, but we need the volume in terms of a section 
of arc length ‘s’ that we can actually measure. 

Hence we need to express ‘h’ in terms of ‘s’.

From Figure 1, we get h = OM − OQ = R − R cos θ.
Hence h = R (1 − cos θ) … (1)
Now θ = (θ +α) − α where θ +α = sin−1(r/R) ≈ 0.265 and  
α = s/R = s/57.25.
So θ = 0.265 − s/57.25 … (2)
Hence from (1) and (2) we have  
h = 57.25[1 − cos(0.265 − s/57.25)].
Check: When s = 0, h = 2 (rounded from 1.99)

To substitute this expression into the volume formula to obtain V 
as a function of ‘s’ is routine but challenging and becomes messy:
V = πR3(2 + cos(sin−1(r/R) − s/R))( 1 − cos(sin−1(r/R) − s/R))2.

It is simpler to proceed in two stages: first calculate values of ‘h’ 
from chosen values of ‘s’.
Then obtain corresponding volumes using V = πh2 (3R − h)/3. 
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Figure 1 Cross-sectional diagram of a partly full dam



Solve the mathematics (a) for dam volume
(Note that ‘s’ takes values from 0 to the length of arc (AM)  
= R(θ +α) ≈ 0.265 x 57.25 or about 15m.) 

Example: s = 1 gives h = 1.745 and thence V ≈ 542 (m3). This is 
approximately 76% of the dam capacity of 710 m3. So when the 
distance to the water’s edge has dropped by only 1 metre (approx 
6.67%), the volume has been reduced by almost one-quarter. 

Table 2 shows the results of calculating (using a spreadsheet) 
these quantities for values of ‘s’ at (initially) one-metre intervals. 
Notice that when the waterline has receded only three metres 
from the top of the dam, the volume of water is much less than 
50% of the capacity.

To interpret the results, Figure 2 contains the graph of 
V = πR3(2 + cos(sin-1(r/R) − s/R))( 1 − cos(sin-1(r/R) − s/R))2 
generated by using graphing technology. This could be used, for 
example, as a chart pinned on the kitchen wall from which the 
volume of water remaining can be read, given only the distance (s) 
to the water line from the high water mark when the dam is full. 

Formulate the mathematical model (b) for water 
loss over time
To estimate how long water in a dam will last, we need to make 
further assumptions – about evaporation. 

Assumptions
Internet research will typically show that the evaporation rate varies 
with temperature, wind speed, sunshine, and relative humidity. 

It also varies throughout the year, but a rough daily evaporation rate 
(average) can be found in (cm or mm) by dividing the average annual 
value by 365 days. This will be sufficient accuracy for estimation 
purposes, although in practice there will be seasonal variations. 

So estimating the value for central Victoria, from data given 
in the problem description, we obtain the average amount of 
evaporation per day = 160/365 ≈ 0.44 (cm). 

This is the ‘depth’ of water that is lost across any exposed surface 
area in a day. The volume lost will vary with the surface area.

Calculations will overestimate the number of days that suitable 
water is available to animals. Near the end the dam will resemble 
a bog and the water undrinkable. 

Solve the mathematics (b) for water loss over time
The daily amount lost by evaporation will vary with the area of 
water surface, but by using the average value we can estimate 
how long the water should last without further rain. 

From the data provided for this problem, for central Victoria 
we assume that the average amount of evaporation per day is 
approximately 160/365 ≈ 0.44(cm). This is the ‘depth’ of water 
that is lost across any exposed surface area in a day. The volume 
lost will vary with the surface area.

From Figure 1, the cross-sectional area when the depth of the dam 
is ‘h’ is a circle with radius ‘x’ and area πx2 where x2 = 2Rh − h2.
Hence A(h) = π(2Rh − h2). 
Note when h = 0, A = 0 and when h = 2,  
A = 706.85 − the value of π (15)2. 
Mean value of the cross-sectional surface area averaged over the 
interval h = 0 to h = 2 is given by

–     π (2Rh − h2) dh = – (3R − 2) ≈ 355.5, since R = 57.5.

If the dam is full and no more rain falls, we can estimate how 
many days it would take for the dam to dry up:

710/1.56 ≈ 455 (approximately 65 weeks or 15 months worth of 
water supply).

If the dam must sustain a herd of 300 sheep on dry pasture, then 
daily consumption of water by 300 sheep (from the example 
data) is 2500 × 300/365 ≈ 2055 litres ≈ 2.055m3. 

Total average water loss per day from (consumption + 
evaporation) ≈ 3.62 m3.

Number of days of water available ≈ 710/3.62 ≈ 196 days (about 
28 weeks or just over 6 months).
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s (m) h (m) V (m3) V/capacity (%)

0 2.00 710 100.00

1 1.74 542 76.36

2 1.51 406 57.14

3 1.29 297 41.77

4 1.09 211 29.72

5 0.90 145 20.46

6 0.73 96 13.55

8 0.45 36 5.08

10 0.23 9.8 1.38

15 0.00 0.00 0.00

Table 2 Dam volume and depth against distance dam water has 
receded from high water mark
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Figure 2 Graph of volume against ‘s’ for circular dam
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Interpret the solution 
Mathematical outcomes have been continually linked to the dam 
structure, its volume and dimensions, and practical implications 
– as for example the meaning of the graph in Figure 2. This 
is typical of problems involving a variety of mathematical 
calculations. Their meaning within the problem needs to be 
interpreted and assessed as they arise, for testing numerical 
outcomes against the real situation will often identify errors in 
calculation that need to be addressed. 

The formula obtained translates the stepped out distance (s) into 
a corresponding value for volume that gives estimates of volume 
for any measured value of s. This would provide the basis for 
constructing a ready reckoner or wall chart if desired. 

The data provided assumed a consistent evaporation rate 
based on an annual average. But the scenario posed — drought 
conditions — could be considered to be different from the 
average. How will the outcome vary, if different values are 
considered for the evaporation rate? 

The data provided for livestock water requirements are annual 
averages. In a real-world scenario, are animals likely to need more 
water in drought conditions than in average weather? How will 
the outcome vary if different values are considered for the water 
consumption rate? 

For water loss over time, noting the observation about boggy 
conditions when the dam is nearly empty, the figure obtained will 
overestimate the time drinkable water will be available. A safer 
estimate would be about one month less. Perhaps?

Students can contribute actively to these sorts of ideas, and 
resulting refinements, once they engage with properties of the 
real contextual setting.

Evaluate the model 
Apart from the checking of working for possible errors 
in mathematical calculations and/or in the application of 
technology, evaluation involves continuous checking against the 
needs of the problem context. 

Has the solution provided a sufficiently good answer to the 
problem posed, or do we need further work? Why?

Sometimes when the answer to the first question is ‘yes’ the 
first answer obtained suggests a deeper exploration that only 
becomes obvious from the initial modelling effort. This then 
stimulates another cycle of modelling with an amended purpose. 

A different perspective on evaluation was reported by a teacher 
who used a version of this problem with her year 10 class. An 
appreciative parent who happened to be a farmer told her that 
stepping down the bank was the method he and others used in 
estimating the amount of water in a dam.

Report the solution
The modelling report could contain all the above components 
of the solution of the problem. It should summarise and 
illustrate how the mathematical insights obtained advanced an 
understanding of the problem — even if this sometimes means 
that the solution attempt in its present state is in need of further 
development. All assumptions and choices of data values should 
be explained and justified.

In this case the report should develop as a systematic and 
cohesive narrative: considering the implications of drought 
conditions for livestock farmers; providing tools for farmers to 
use to estimate water supply, such as the data shown in Table 2 
and the graph in Figure 2; and recommending a timeframe  
within which provisions should be made for alternative supplies 
for stock. 
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