
For office use only Team Control Number For office use only

T1 2017019 F1

T2 F2

T3 F3

T4 F4

2017
IM2C

Summary Sheet

”A meeting is an event at which the minutes are kept and the hours are lost” - Anonymous.

In order to make the most of the hours lost in meetings, it is essential to maximize the working ability of
each participant by reducing the effects of jet lag and climate shock. In our attempt to maximize productivity
at an international meeting, we assessed several different factors.

To start, we analyzed how traveling across time zones affects productivity. To do so we created a vector
model to represent the time zones from which each attendee is traveling and used the resultant sum to determine
the most efficient time zone for the meeting. Research revealed that eastward travel often causes an upturn in
the severity of jet lag symptoms when compared to westward travel; thus we devised a method of weighting the
vectors based on travel direction.

Next we created a zoning system to organize the effects of climate and travel time based on latitude and
longitude. Climates were identified for each zone and weather data was used to mathematically represent how
climatically different each possible location was from the home of the meeting’s participants. Using the Haversine
formula the team determined distances traveled by the participants to the possible destinations. These results
were then translated into sleep loss as a result of flying and subsequently into a percentage of work lost. In
sum, we identified the three factors causing jet lag to be changing of time zones, difference in climate, and flight
distance, and in the process developed methods to quantify them.

After collecting data for these three factors, the team constructed an algorithm to weight the impacts
according to the estimated loss in work productivity as a result of said factors. The algorithm would then
output scores for each destination.

Furthermore, the team tested the sensitivity of its model by adjusting the constants determined from research
to see how the location decision would be affected. Once the productivity algorithm was complete, the team
considered how it could ensure an equal input from each individual at the international meeting. By taking the
standard deviations of the impacts on the participants for each zone and then weighting these results against
the productivity score, the team could see how the location decision changes depending upon how important
equality is.

The team also evaluated the cost of the meeting. Based on distance traveled, sizes of airports, and average
hotel costs in the destination cities, it determined a total cost for each zone depending on where attendees came
from.

Finally, an easy-to-use Python program was developed to readily visualize the algorithm. The software simply
takes in the latitude/longitude pairings of the attendees’ hometowns, along with the month and the desired
weighting of the productivity, equalization and cost factors. It then spits out a map of the regions where each
region is overlaid with its corresponding rank.

After weighting, the team determined final recommendations. The small meeting should occur in Novosibirsk
(Russia) and the large meeting in Beirut (Lebanon), Kampala (Uganda), or Perm (Russia), depending upon
how important cost, equality of productivity, and total work productivity are according to the standards set by
the International Meeting Management Corporation.

Lastly, the two required meetings given to test the algorithm did not include any attendees from Africa or
South America. So, the team decided to additionally test the model on the G-20 summit, the Super Bowl of
diplomatic conferences, in order to test its limits.

1

Jet Lag(
IM 2C

)
team 2017019

April 5, 2017

Contents

1 Restatement of the Problem 4

2 Assumptions and Justifications 4
2.1 Given Rules . 4
2.2 Further Assumptions . 4

3 Variables 4

4 Model Introduction 5

5 Modeling the Effects of Time Zones 5
5.1 Explanation of the Time Zone Model . 5
5.2 Results of the Time Zone Model . 6

6 Zone Based Model 6
6.1 Effects of Climate . 7
6.2 Distance . 7
6.3 Travel Time . 8

7 Weighting the Factors to Determine Scores 10

8 Initial Results 10

9 Sensitivity Analysis 11

10 Equalizing the Effects on the Participants 13

11 Cost 15
11.1 Airfare . 15
11.2 Hotel Costs . 17

12 Combining the Three Facets of the Algorithm 17

13 Final Test: G-20 Summit 18

14 Strengths and Weaknesses 19

15 Conclusion 19

16 Appendices and Citations 20
16.1 Sources Consulted . 20
16.2 Graphs for Sensitivity Analysis . 20
16.3 Tables . 22

16.3.1 Zones . 22
16.3.2 Costs . 24

16.4 Final Software . 25

2

Team 2017019 Page 3

16.5 Computer Code . 33
16.5.1 Distances . 33
16.5.2 Time Zones . 34
16.5.3 Travel Time Program . 41
16.5.4 Work Productivity Algorithm . 42
16.5.5 Sensitivity Analysis . 45
16.5.6 Equality Algorithm . 48
16.5.7 Determining Cost for Each Zone . 51
16.5.8 Balancing Productivity, Equality, and Cost . 52

16.6 Formulas . 55
16.7 Derivations . 56

16.7.1 Haversine Formula . 56

3

Team 2017019 Page 4

1 Restatement of the Problem

We have been enlisted by the International Meeting Management Corporation to develop an algorithm to
calculate the best place to have meetings based on the home locations of the individuals who will be attending.
These attendees will experience several effects from their travels that could negatively impact their performance.
Jet lag, differing climates/times of year and overall distance traveled are all considerations that must be taken
into account when determining the ideal location for a meeting. Choosing locations that impact the performance
of each participant equally and minimizing the cost of the meeting are secondary criteria.

2 Assumptions and Justifications

2.1 Given Rules

• We assume that there are no political problems associated with the meetings. Thus any attendee can
travel anywhere in the world without restriction.

• Attendees cannot be brought to the meeting place early to acclimatize to the new location; nor are they
allowed to rest after their journeys.

2.2 Further Assumptions

• We assume that attendees will be able to fly into a given city at relatively equal times. Also, there will
be no flight delays, crashes, or any other event of that sort. Attendees simply fly to their destination and
arrive at around the same time. Justification: This is to ensure that all participants are on time to the
meeting place. (And ensures their safety).

• The Earth is roughly a sphere. Justification: Although the Earth is truly an ellipsoid, if we assume
it’s a sphere, we will lose very little accuracy, and the calculations of distance will be much easier using
properties of spheres.

• The people living in Western China follow a more realistic time zone than the set time for the entire country.
Justification: All of China has just one time zone. Therefore this assumption allows our algorithm to
more accurately model the time zones of the world based upon geographic location.

• We assume that the meeting will be held indoors in a climate-controlled facility. Justification: This is
the typical venue for a business/science meeting. We don’t want attendees getting frostbite or heatstroke,
nor being whipped up by winds and storms.

• We assume that 10% of the attendees’ time is spent outdoors. Justification: People spend part of their
day outdoors. A source stated that the average American spends 7% of their day outside14. Since the
participants are from around the world and they might be interested in sight-seeing during breaks, they
will explore their area.

• We assume that all attendees will be affected at the same rate by the various factors causing jet lag.
Justification: All participants will be working together and thus it is reasonable to declare that they all
have similar physical and psychological abilities in combating jet lag.

• We assume that all flights cost the same per mile no matter what the time of year or flight path is.
Justification: Although flight prices do vary based on both of these, in attempt to simplify the model,
we did not account for them. There are too many variables that affect the cost of a flight, so we had to
prioritize the most important ones.

• We assume that all attendees will by flying from home to their destination as long as their home is in a
different zone than the destination. Justification: This problem involves the exploration of jet lag, which
is caused by flying at high speeds. Only in extreme situations will an individual feel the effects of jet lag
without flying.

3 Variables

a = cost of airfare from home to meeting location

d = distance from home to meeting location

h = average cost cost of a one-night stay for one individual in a hotel in a selected city from a given zone

4

Team 2017019 Page 5

m = average precipitation of a certain zone

s = current season in a certain time zone

t = average temperature of a certain zone given the season

ze = number of time zone changes from home to meeting location when traveling eastward

zw = number of time zone changes from home to meeting location when traveling westward

4 Model Introduction

Our model will assign a score to 75 different regions across the world that we created based off of latitude and
longitude. Figure 2 displays these zones on a map. We decided that there are three main influencers that would
effect the attendees of a global meeting: distance traveled (along with additional travel time), changing of time
zones, and differences in climate. To find out which regions would be the best places for any particular meeting,
we developed an algorithm that calculates a score for each region. This score is a weighted sum of three different
sub-scores corresponding to the three problems we identified. Each sub-score is a percentage of productivity
lost due to one of the three issues. Therefore, lower scores are better scores.

5 Modeling the Effects of Time Zones

5.1 Explanation of the Time Zone Model

There exists well-documented research confirming the detrimental affects of time zone shifts on a traveler’s
productivity. Changing time zones causes a disruption in the circadian rhythm. According to Source 9, this
desynchronization impacts many anatomical functions including sleep cycle, digestion, menstruation, immune
system operations, and more. These side affects have a significant influence on productivity, as seen in Source 8.
Interestingly, the effects of time zone change are more pronounced when an individual travels east in comparison
to traveling west. Source 7 explains that such a trend can be explained by human circadian rhythms, which
naturally have a period of more than 24 hours. When a person travels west and the day seems longer, his or her
circadian rhythm adjusts more easily. On the other hand, when the person travels east and the day seems shorter
his or her circadian rhythm does not adapt as easily. Thus, it would be in the best interest of the International
Meeting Management Corporation to minimize the total number of time zones attendees must cross while noting
that eastward travel is more detrimental to attendees and distributing travel as equally as possible. In other
words, a time zone must be found that distributes the time zone changes as equally as possible for all attendees
while paying attention to the minimization of total travel and direction of travel. The team created a MATLAB
program that gives equal weight to all time zones from which attendees come from. This program was founded
upon the principles of the characteristics of resultant vectors. To start, each time zone was assigned a number:
the time zone containing Greenwich, England was assigned 0, the time zone containing Madrid, Spain was
assigned 1, and so the pattern continued from east to west for time zones 2-23. It is important to note that it
does not matter which time zone is assigned a certain number so long as the numbering follows the previously
described pattern. Then a circle was plotted and on its circumference were placed 24 equally-spaced dividers
as can be seen in Figure 1. Each divider was assigned a number 0-23 to correspond with the numbered time
zones. Next, a vector was drawn from the center of the circle in the direction of the time zone from which a
certain attendee came from. This vector also had a magnitude that would correlate to the number of attendees
from a certain time zone. For example, if there was one attendee from Greenwich, England and two attendees
from Madrid, Spain, there would exist a vector of magnitude 1 in the direction of the 0 (0◦) and a vector of
magnitude 2 in the direction of the 1 (15◦). Please note that units are not important in regard to the magnitude;
it only matters that all magnitudes are proportional to each other. After all vectors have been accounted for,
the resultant vector is calculated. This vector will point in the direction of the most efficient time zone based on
the most equal distribution of total time zones crossed. To explain, in the example represented in Figure 1, the
red resultant vector has a direction of 78.435◦. Since 78.435◦ is closest to the interval of 75◦, this means that
the time zone with the most equal distribution is time zone 5 (Central Russia). However, the direction of travel
can also impact a traveler. To account for this, the number of time zones crossed by a westerly attendee when
traveling to the time zone designated by the resultant vector is divided by two. For example, someone traveling
from Melbourne, Australia to Moscow, Russia crosses 7 time zones while going west, so when determining the
best time zone for the meeting this attendee accounts for only 3.5 time zone crossings. This calculation is a
suitable estimate of the effects of time zone change according to the descriptions provided by Source 10. No
such treatment was applied to eastward travel. So, when the resultant vector points to a certain time zone, the
previously described calculations regarding westward travelers are applied and the total time zones crossings

5

Team 2017019 Page 6

are added up for the time zone designated by the resultant vector and time zones near to it. Essentially, the
program found the most equal time zone and from there found the time zone with the fewest overall changes
while accounting for the differences in eastward and westward travel. Daylight savings time is a factor which
cannot be ignored, as it varies from nation to nation and thus causes disruptions in the time zone numbering
pattern. To counter this aspect, the team adjusted the time zone when necessary. For example, if an attendee
from London, England was to attend a meeting in Beijing, China in June, the time zone for the individual from
England would be entered as 1 and not 0 because in England daylight savings time starts in March and ends
in October.

Figure 1: A model with vectors representing how the most effective distribution of time zone travel can be found
if a meeting requires one attendee from Zutphen, Netherlands and two attendees from Tomsk, Russia. The red
vector represents the resultant vector, which points to Time Zone 5 (Central Russia).

5.2 Results of the Time Zone Model

Using this vector model, it was determined that Time Zone 7 (Central Russia / Southeast Asia) was the most
efficient time zone for the small meeting. This time zone presented the most effective combination regarding
equality of time zone changes and total time zone changes. For the big meeting, Time Zone 5 (Central Russia
/ Western Asia) was the time zone that most efficiently balanced equality of time zone changes and total time
zone changes.

6 Zone Based Model

After researching the effects of jetlag caused by switching time zones and climates, the team realized that it
would need to be able to weight those factors along with distance traveled. For that reason, we developed a
general model that could account for the factors of time zone shifting, distance traveled, and acclimatization,
weight them, and then generate scores for different corners of the world. To start, the team split the continents
into different zones that were 20 degrees of latitude wide and 20 degrees of longitude tall. This pared down
to a reasonable number the areas that the team had to compare while still allowing for consideration of the
differences amongst zones. Zones that encompassed two areas that were starkly different in climate or time zone
were then split into subzones (Southern Spain, for example, has a Mediterranean climate that is quite different
from the desert environment of west Algeria). In Figure 2, notice how the zones are numbered starting in the
far northwest, and count down and towards the right. Please notice that there is some land, such as Northeast
Russia, that is not contained in a zone. Those are areas we felt should not be considered because realistically
they are either too remote, too unpopulated, or too cold (or a combination) to offer suitable locations for a
meeting.

6

Team 2017019 Page 7

Figure 2: This map shows the layout of our regions and their corresponding numbers. Please note that regions
2 and 4 are located in Siberia.

In the end there were 75 zones, and each one was assigned a climate and time zone. Clearly, the locales
within these zones will differ in both regards. However, because the team considered the average climate and
time zone of each, this model provides a valuable representation of what the average inhabitant experiences in
that location; such representation is the real idea behind this model. Additionally, all of the zones are accurate
to within one hour of the time zone and the climates are accurate for the major population centers of each zone.

Using internet sources, we compiled a database of monthly average temperatures and monthly average
precipitation using a characteristic city from each zone. This allows us to code the model to take in data for the
cities where the members hail from, compare them to each zone, and quickly find the average absolute difference
in temperature and precipitation. Also, with this model it is relatively simple to find how close the zones are to
the ideal 22 degrees Celsius (as explained in the Climate Effects section).

For time zones, the team used the previous research which stated that traveling to the east was more
detrimental to a passenger than traveling west. By assigning each zone a time from 1 to 24 starting at the
International Date Line and continuing east, our code takes the difference between the destination and home
to count how many time zones a person would cross. Of course if the result is greater than 12 or less than -12,
the model has to account for the fact that the person would fly in the opposite direction. To determine how
much sleep a person would lose due to jet leg, we divide negative values (westward travel) by two and take
the absolute value. Positive values remain unchanged because we determined that traveling to the east causes
the average person to lose as much sleep as the number of time zones he or she crosses. These constants are
not exact, but they give us a starting point to work from, and can later be reevaluated during the sensitivity
analysis portion. This method to model the affects of time zone changes replaced the time zone model from
Section 5 to make the time zone calculations compatible with the code for the climate and distance factors.

6.1 Effects of Climate

Looking at the effects of climate, we realized that we are able to separate the world’s climates into 16 general cli-
mate types. Then we labeled each zone with its dominant climate type, using data from source 20. Subsequently
we found average temperature and rainfall data for each separate month at a sample location from each climate
and used this data for any zone with the same climate. Using this data, we found the difference in temperature
and rainfall levels between the home zone of any attendee and the meeting zone for any given month of the year.
Differences between the climates of the home zone and meeting zone have proven to effect work output: as these
differences increase, productivity decreases. Finally, when considering the meeting location, a location with a
temperature close to 22 degrees Celsius is optimal for work according to source 4, an article titled ”Effect of
Temperature on Task Performance.” All of this information will later be put into the algorithm for determining
the best meeting location.

6.2 Distance

The distance the attendees must travel is an importan consideration because long plane rides are exhausting
and therefore negatively affect productivity. Thus, we want to minimize the distance each attendee must travel.
However, the minimum total distance often is unfair: some attendees will have to travel across the globe, while
others might simply drive downtown to the meeting place. We want each attendee to contribute approximately
equally to the meeting, so we also need to equalize the distances the people travel. Ideally, we will strike a
balance between minimizing the total distance and equalizing the travel of each attendee.

7

Team 2017019 Page 8

To rank the 75 regions based on distance we developed a Python program based on the Law of Haversines.
This trigonometric identity describes spherical triangles, but can be rearranged to calculate the distance between
two points on a ”great circle.” A great circle is a circle around a sphere that has the same circumference as the
sphere (a good example is a ball wrapped with rubber bands). Furthermore, the shortest distance between two
points on a sphere is the length of the arc of the great circle connecting them. The Haversine Formula is the
following (it will be derived in the appendix):

d = 2r arcsin

(√
sin2

(
ρ2 − ρ1

2

)
+ cos (ρ1) cos (ρ2) sin2

(
λ2 − λ1

2

))
.

where d is distance (miles), r is the radius of the great circle (circumference of Earth in this case), and the
points (ρ1, λ1) and (ρ2, λ2) correspond to the latitude/longitude pairings of the two points converted to radians.

The program uses the Haversine formula to calculate the distances from each region to each attendee’s home
town. Then, the program can take those lists of distances and find the total distance for each region and the
standard deviation of the distances.

6.3 Travel Time

In order to find the percentage of productivity lost due to travel, we need to convert each distance into time
spent traveling. To do this, we need to establish a number of constants. We estimate that a person has to spend
a total of 5 hours getting to and from the airport as well as getting through security, waiting at the airport,
and getting his or her bags.

DriveT ime = 5

We also estimate that each layover is approximately 5 hours long, giving us:

LayoverT ime = 5 ∗ Layovers

Furthermore, the time an attendee will spend in the air is approximately equal to the distance divided by the
average speed of a plane. According to Source 13, the average speed of a plane is around 560 miles per hour. To
this time value we can add .2 hours for each takeoff and .32 hours for each landing. These values also account
for time lost accelerating to full speed as well as time spent decelerating.

FlightT ime =
Miles

F lightSpeed
+ (TakeoffT ime+ LandingT ime) ∗ (Layovers+ 1)

Plugging in the values, we get:

FlightT ime =
Miles

560
+ (0.52) ∗ (Layovers+ 1)

We also multiply the distance by 1.1 if there are connections, since this causes the flight distance to increase.
Our final equation is:

TotalTravelT ime = LayoverT ime+ FlightT ime+DriveT ime

We can graph this equation for 0 - 3 layovers, as seen in Figure 3, and find the hours of flight time for each
attendee when traveling a certain distance.

8

Team 2017019 Page 9

Figure 3: A Graph showing travel times with 0 - 3 layovers

This equation has two inputs which are distance and the number of layovers. We found an equation for
distance earlier, but we still need a way to calculate the number of layovers. Looking at flight data from source
5 we see that large cites with a population larger than 1,000,000 require one connection to get to any other large
or medium sized city. Medium sized cites with populations 200,000 < population < 1,000,000, can generally
reach other medium size cities with 2 layovers. Finally, small cities can get to small and medium sized cities
with 3 layovers. Putting this information into a chart, we obtain the following table:

Figure 4: A Table showing the number of layovers based on the size of the start and end city

After adding up the distances to a certain zone for each attendee, we can put all the distances into the total
travel time equation along with the size of the largest city in each zone and the size of the largest city in each
attendee’s zone. This results are displayed in the graph found in Figure 5.

Figure 5: This graph displays the total travel times for both meetings.

9

Team 2017019 Page 10

7 Weighting the Factors to Determine Scores

The end goal of this model is to assess how the location of the meeting will affect productivity level. Therefore, we
needed to determine a way of quantifying the effects of climate, time change, and distance flown on participants’
work productivity.

Sleep deprivation directly leads to a decrease in work performance, and the relationship is linear as shown
by Source 11. Therefore, once we determined how much sleep a person would lose due to time changes and
transportation time, we simply converted that time into a percent of work productivity lost.

The effects of climate were not quite as easy to quantify. The team was able to find a research article about
how ambient temperature affects office workers. It also showed a linear relationship, so once we knew how much
the meeting location differed from 22 degrees Celsius, we could convert that into a percent work performance
loss. On one side, the fact remained that this article was conducted on indoor temperatures, and the indoor
facility for the meeting would most likely be climate-controlled. Still, we evaluated that people spend about a
tenth (Source 17) of their day outside for commute and recreation, so the climate would still affect their overall
work performance, but only by about one tenth of what the research article found.

How acclimatization would affect work performance was the most challenging aspect. Of course people are
going to be distracted by an abrupt change in temperature or humidity. However, the effects of this are minimal
as the participants will be working indoors. Still, sources show that even outdoor temperatures correlate to
distracted office workers.11, so we simply needed to find out how much change equals how much productivity
lost. Easier said than done. Using personal data, we have noticed that students are noticeably distracted after
a drop of about ten degrees Celsius. The Just Noticeable Percent Difference for humans is right around a 1%
change. Using this information, we decided that every 10 degree change in temperature could equate to a 1% loss
in productivity. Similarly, we determined that a precipitation change of 100 mm/month (an average 0.325 inches
per day) would also correlate to a 1% loss in work efficiency. Granted, these conversion ratios are questionable,
and for that reason it is essential to include a sensitivity analysis section, which will come later.

In the end, the algorithm ended up looking like this:

L = .8S + .11C + 0.1dT + 0.01dP

Where L is the Percent Work Loss, S is sleep deprivation, C is the deviation from 22 degrees Celsius, dT is the
average absolute change in Temperature, and dP is the average absolute change in Precipitation.

8 Initial Results

Using this model (and a heck ton of coding, see Appendix 13.2), it was easy to see that for the small meeting
Novosibirsk, with an average productivity loss of 6.0096%, should be selected as the meeting spot. Meanwhile,
the big meeting should be held in Beirut, which resulted in an average productivity loss of 7.6820%.

Figure 6: This map shows the rankings of the 75 regions for the Small Meeting.

10

Team 2017019 Page 11

Figure 7: This map shows the rankings of the 75 regions for the Big Meeting.

9 Sensitivity Analysis

There are many variables in this model, and that means many constants. Nobody can say with 100% certainty
what these specific constants should be (some of them depend upon personal preference), so we have to check
that the constants we found are not skewing the results.

For starters, we will look at the climate effect constants (because those are the ones that we are least
confident about). We take the constant affecting the average difference in precipitation and slide it from 0
(which would mena people don’t mind temperature difference) to 0.1 (every millimeter difference causes a 0.1%
drop in productivity). We graphed how this change in the constant would affect the scores of all 75 zones and
then to make it more visually appealing, we narrowed it down to the two that have minimum scores

0 0.02 0.04 0.06 0.08 0.1

Percent of Work Loss per mm Difference in Precipitation

5

5.5

6

6.5

7

7.5

8

8.5

9

T
o
ta

l
P

e
rc

e
n
t
o
f
W

o
rk

 L
o
s
s
 (

in
c
lu

d
in

g
 o

th
e
r

fa
c
to

rs
)

How Changing the Constant for Precipitation Affects Location Choice

Tokyo

Novosibirsk

Figure 8: Adjusting the weight of the dP variable within reasonable bounds changes the location choice to
Tokyo.

Evidently, if the participants are greatly perturbed by a change in rain/humidity, they should opt for Tokyo
as the meeting location. Tokyo receives more rain than Novosibirsk (About 150mm to 50mm), which would
be more familiar to the participants from humid climates. However, Tokyo only becomes preferable when the
participants feel that a change in 1mm of precipitation would decrease their productivity by 0.83 percent. At
this rate, they would be rendered incapable of any work if the precipitation were to differ by more than 120
mm/day, which is clearly unrealistic as people around the world manage to operate when traveling between
countries that differ by much more than that. Therefore, our model’s result of Novosibirsk remains accurate
given what we feel is a reasonable leeway for the precipitation constant.

Using a similar method, we tested the sensitivity of our model to a change in the constants tied to the
difference in Temperature, dT , and the closeness to the 22 degrees Celsius factor over a range of [0,0.4] and
[0,0.25] respectively (Graphs in Appendix subsection 2). Both indicated that Novosibirsk was the optimal choice.
Then we checked the ratios we determined for the hours of sleep lost when traveling across x time zones in an
easterly or westerly direction.

11

Team 2017019 Page 12

0 0.5 1 1.5 2

Hours of Sleep Lost per Time Change East

4

4.5

5

5.5

6

6.5

7

7.5

8

T
o
ta

l
P

e
rc

e
n
t
o
f
W

o
rk

 L
o
s
s

How Changing the Factor for Sleeploss from East Travel Affects Location

Novosibirsk

Vladivostock

Figure 9: If people lose more than 0.79 hours of sleep from traveling east across a time zone, then Novosibirsk
becomes the best choice over Vladivostok

0 0.2 0.4 0.6 0.8 1

Hours of Sleep Lost per Time Change West

4.5

5

5.5

6

6.5

7

7.5

T
o
ta

l
P

e
rc

e
n
t
o
f
W

o
rk

 L
o
s
s

How Changing the Factor for Sleeploss from West Travel Affects Location

Novosibirsk

Vladivostock

Figure 10: If people lose more than 0.63 hours of sleep from traveling west over a time zone, then Vladivostok
becomes optimal.

From these two graphs we see that small, reasonable changes in the time zones to sleep loss ratios do have
a significant impact upon the location choice. However, going back to the research on the effect of switching
time zones, we remember that traveling east across time zones is more detrimental to a person than traveling
west. Novosibirsk’s results best fit this evidence as it performs best when the impact from eastward travel is
high and westward travel is low. Also, this change in the constant only shifted the location from one Russian
city to another one about 500 miles away. Therefore, our initial results must have been fairly accurate.

We also used this method of constant-shifting to check the accuracy of the big meeting results. The precipi-
tation constant did not affect the location choice until it was ramped up to 0.124 (graph in appendix subsection
2), which as previously mentioned, is illogically high. Meanwhile the temperature constants showed an interest-
ing pattern. First we will examine the effects of the constant tied to the average change in degrees Celsius, as
shown in Figure 11.

12

Team 2017019 Page 13

0 0.1 0.2 0.3 0.4 0.5 0.6

Percent of Work Loss per Degree Celsius Difference from Hometown

6

8

10

12

14

16

18

T
o
ta

l
P

e
rc

e
n
t
o
f
W

o
rk

 L
o
s
s
 (

in
c
lu

d
in

g
 o

th
e
r

fa
c
to

rs
)

How Changing the Constant for Temperature Affects Location Choice

Beirut

Singapore

Stockholm

Figure 11: As the similarity in temperature becomes more important, the location choice goes northward.

To look at the temperature constant, we determined a reasonable range from 0 (people don’t care about
temperature similarity) to 0.5 (2 degrees of outside temperature difference cause 1% loss in concentration)
When the constant is minimal, Singapore is the best choice. But if temperature has a moderate impact (0.012 -
0.387% per degree change) then Beirut would be optimal. With a Marine West Coast climate, Stockholm more
closely resembles the temperatures of the majority of the participants’ hometowns (Boston, Moscow, Warsaw,
and Copenhagen), so when a lot of weight is placed upon that value, it reigns supreme. To see scores over
the reasonable range, we integrated and divided by the range for an average score, yielding Stockholm with a
score of 10.3728 and Beirut with a score of 10.0756. Even if the constant were to fluctuate depending upon the
participants’ preferences, Beirut remains a reasonable destination.

We also checked the Close To 22 degrees constant with the big meeting, as shown in Figure 12

0 0.05 0.1 0.15 0.2 0.25 0.3

Percent of Work Loss per Degree Celsius Difference from 22

6

7

8

9

10

11

12

13

14

15

16

T
o
ta

l
P

e
rc

e
n
t
o
f
W

o
rk

 L
o
s
s
 (

in
c
lu

d
in

g
 o

th
e
r

fa
c
to

rs
)

How Changing the Constant for Temperature Affects Location Choice

Beirut

Kampala

Perm

Figure 12: As closeness to 22 degrees Celsius becomes more important, the best location choice shifts Southward.

Again we plotted the scores of the location that were minimal at some point along the range of reasonable
constants, and once more we saw that Beirut had the lowest average score.

10 Equalizing the Effects on the Participants

The problem states that each participant should contribute equally, so while our model has found a good spot to
boost productivity, we need to check whether it is fairly evaluating the needs of all attendees. For that reason,
we can take the impacts on each person and then take the standard deviation. We add up those standard

13

Team 2017019 Page 14

deviations for each factor using the same algorithm, and we can see how equal the different zones treat the
participants.

For the small meeting, the detriments were most equal when the meeting was held in Novosibirsk (Russia),
and for the big meeting the most equal treatment occurred in Kampala (Uganda).

While this result greatly implicates that Novosibirsk is a good choice, the Kampala decision is not very close
to Istanbul. In fact, it is quite distant from all of the participants, which might be the reason why it had such
similar impacts among all 11 participants. It’s not a great idea to hurt everyone so that the production rates
are more similar. Kampala has a work productivity loss of 9.8703 percent compared to Beirut’s 7.6820. But
how important is equal participation? Well, when we don’t know exactly how to weight something, we turn to
graphical analysis.

First we chose a range for how much we will weight the standard deviation results, such as (0,5). Then we
selected the locations that are minimums in this range and plot just them. Figure 13 shows how the scores of
Beirut and Kampala change as the equalizing score receives more importance.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Weight Given to Equality Value

6

8

10

12

14

16

18

20

22

24

T
o

ta
l
S

c
o

re

How Location Choice Changes as Cost and Equality are Considered

Beirut

Kampala

Figure 13: Beirut was the best before we considered equalizing the effects. When the Equalizing Score was
weighted by a mere 0.16 (Essentially saying that equality is 16% as important as productivity), Kampala
became optimal.

It’s really up to the meeting members how much weight they place on equalizing participant contributions.
Still, from here it’s not hard to see that Kampala remains the optimal choice for a wide range of reasonable
values. Personally, we feel that they should be weighted equally, which would shift the location from Beirut to
Kampala.

Figure 14: This map shows the rankings of the regions for the small meeting when work productivity and
equalized work productivity are weighted equally.

14

Team 2017019 Page 15

Figure 15: This map shows the rankings of the regions for the big meeting when work productivity and equalized
work productivity are weighted equally.

11 Cost

A fundamental concern of any company, including the International Meeting Management Corporation, is cost.
For this reason it is important that we factor cost into the decision regarding the ideal meeting location. In
doing so, it was determined that there are two aspects that will influence cost: airfare and hotel prices.

11.1 Airfare

An algorithm for airfare was determined by flight data from source 5. The skeleton equation is:

Cost = StartingCost ∗ Flights+ Costpermile ∗ (miles ∗ inefficiency)

The starting cost is the base cost of a plane ticket, which is $50 according to source 18. Inefficiency is how much
extra distance is added to the trip if there are connections. This is assumed to be 1.1, the same value used in
the Flight Time section. Reworking the equation so that it is solved for Cost per Mile, we get:

CostperMile =
Cost− StartingCost ∗ Flights

inefficiency ∗miles

Now we can plug in real values from source 5 and find a reasonable estimate for Cost per Mile.

Figure 16: Calculated light Cost per Mile for four different flights.

Averaging these, we get $0.168 per mile. By plugging in the distances and number of flights to each zone for
the meetings (found in the explanation of travel time, Section6.3) and multiplying by 2 for the return trip, we
get our travel costs. After adding the hotel costs to the travel costs, we get the following graph:

15

Team 2017019 Page 16

Figure 17: Total cost for flights and hotels for each zone for both meetings.

Novosibirsk is the cheapest option for the small meeting; thus there is no need to worry about cost opti-
mization in regard to the small meeting.

For the larger meeting, we can weight the three factors in a simple formula:

Score = Productivity + c1 ∗ Equality + c2 ∗ Cost

To analyze these factors we plotted planes for each zone showing how the total score changed. Then we
looked at the surface plots from beneath to see the minimums, as shown in Figure 18. The upper bound for the
cost weight was determined by using the average hotel cost to find the number of dollars for one additional hour
of sleep and consequently the percentage points of productivity per dollar as 1

341 (Formula in Appendix 13.5).

Figure 18: This graph shows which location is optimal for the big meeting depending upon how important cost
and equality are over total productivity.

The problem mentioned that cost was not of utmost importance, but if funds are tight our model reveals that
Perm (Russia) is the optimal solution. If funds are less important, and equality of contribution is prioritized,
then Kampala (Uganda) should be selected. In the case that neither cost nor equality are considered, Beirut is
the optimal location.

16

Team 2017019 Page 17

11.2 Hotel Costs

Hotel costs were calculated as an average of the prices provided by Source 16 for the selected cities from each
zone. These calculated nightly hotel prices can be found in Table 16.3.2.

12 Combining the Three Facets of the Algorithm

As stated in the summary, we developed a computer program to readily run our algorithm and to easily visualize
the scores our algorithm generates. Depending on how the three scores (productivity, equalization, and cost)
are weighted in the code, there will be considerably different results. For example, in Figure 19 and Figure 20
below, the rankings are quite a bit different from our original model based on productivity only. So it really
depends on the weights that are given. In the figures below, the categories are weighted equally, but the best
scenario according to the IMMC is to weight productivity and equalization more. This really goes to show the
extensive ability of our model. If the IMMC does in fact happen to be short on budget, they could simply weight
cost more in our algorithm. The program is very intuitive and has the power to accommodate a plethora of
needs that the IMMC might have.

Figure 19: The final rankings for the small meeting using productivity, equalization, and cost, all weighted
equally.

Figure 20: The final rankings for the big meeting using productivity, equalization, and cost, all weighted equally.

17

Team 2017019 Page 18

13 Final Test: G-20 Summit

The small and big meetings were good warm-ups for our software, but we really wanted to see what it could do.
We decided to model the optimal meeting place for 20 foreign leaders at the 2017 G-20 summit, the Super Bowl
of diplomatic conferences! The location for the actual summit is Hamburg, Germany; we intend to evaluate that
choice.

Very simply, we put in the 20 Latitude/Longitude pairs of the 20 national capitals (one member is the
European Union which is headquartered in Brussels, Belgium) and then its month: July. Below is Figure 21
which shows the Productivity rankings for the 75 regions for the Summit. We can see that Hamburg, Germany
is a very good selection. (This is because there are a lot of European countries represented.) Then Figure 22
and Figure 23 show similar findings. The top spot is Region 37 for two out of the three measures. Istanbul,
Turkey is the corresponding city.

Figure 21: The G-20 rankings based on productivity.

Figure 22: The G-20 rankings based on productivity and equalization weighted equally.

18

Team 2017019 Page 19

Figure 23: The G-20 rankings based on productivity, cost, and equalization weighted equally.

14 Strengths and Weaknesses

One strength of our model lies in the systematic approach that we took toward the problem. We started by
analyzing various factors that impact the location choice, and even used a variety of means in order to check
the accuracy of our methods. Then, once we had a grasp upon the individual factors, we created a way to assess
all of those together and used a zoning system to organize the locations based on coordinates.

Another strength of our model is that we not only consider a multitude of factors that play into determining
the meeting, but we also heavily evaluated the weighting of these factors. For several, we have scholarly articles
that empirically support the constants we determined, and for those we were fuzzy on, we tested them within
reasonable ranges to verify the sensitivity of our model to them. We did not arbitrarily assume constants.

A weakness of our model is that it generalizes the world just a tad. Some of the zones include different
climates or time zones, and while we did our best to find a suitable average, making more zones would have
yielded a more realistic model. Had we more time, we could have pursued this option.

15 Conclusion

In conclusion, our model found that using a weighted algorithm based on climate, distance, and time zone
crossings we could take in any number of different participants from around the world, plug in their information,
and find the location that optimizes the productivity of the meeting. It also determines which location is best
depending upon the importance of equal contributions and costs.

For the small meeting, the model shows the Novosibirsk (Russia) not only optimizes work proficiency and
equality of contributions, but it also has the lowest cost based upon flights and hotel rooms.

For the large meeting, the model revealed that the best location depends upon how the committee feels
about equality and costs. If the budget cannot handle more than $20,000, then Perm (Russia) at $16,938 total
should be chosen. If ensuring equal contribution is of utmost importance and a cost of $26,133 is not a concern,
then Kampala (Uganda) should be selected. In fact, the initial location choice, Beirut (Lebanon) at $27,141,
would not be a wise choice as it is more expensive and less equal than Kampala while only offering a 0.36%
increase in overall productivity. Since the committee claimed that money was not a big issue, we recommend
Kampala, Uganda as the site for the large meeting in January.

In the final hurrah, our algorithm found that Istanbul, Turkey was an optimal location for the G-20 summit.
And the actual location of the 2017 Summit is in Hamburg, Germany, which is in Region 30. Region 30 scored
2nd for productivity in our algorithm, so our model truly does work!!!!

19

Team 2017019 Page 20

16 Appendices and Citations

16.1 Sources Consulted

1. http://www.thecityedition.com/2012/GPS.html

2. http://www.geomidpoint.com/

3. http://escholarship.org/uc/item/45g4n3rv#page-2

4. Seppanen, Olli; Fisk, William J.; & Lei, Q.H.(2006). Effect of temperature on task performance in office
environment. Lawrence Berkeley National Laboratory. Lawrence Berkeley National Laboratory: Lawrence
Berkeley National Laboratory. Retrieved from: http://escholarship.org/uc/item/45g4n3rv

5. https://www.google.com/flights

6. http://www.distancefromto.net/

7. http://www.sportsci.org/encyc/jetlag/jetlag.html

8. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2656292/

9. Charles Pollak, Thorpy, Michael J., and Jan Yager. ”Jet Lag.” The Encyclopedia of Sleep and Sleep
Disorders. N.p.: Infobase, 2010. 250. Online.

10. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3435929/

11. http://www.businessinsider.com/chart-on-sleep-deprivation-2013-5

12. https://crew.co/blog/how-climate-influences-productivity-why-the-future-of-productivity-doesnt-look-so-hot/

13. B. Kollmeier; T. Brand; B. Meyer (2008). ”Perception of Speech and Sound”. In Jacob Benesty; M. Mohan
Sondhi; Yiteng Huang. Springer handbook of speech processing. Springer. p. 65. ISBN 978-3-540-49125-5.

14. https://www.quora.com/What-is-the-average-speed-of-an-aeroplane

15. http://snowbrains.com/brain-post-much-time-average-american-spend-outdoors/

16. https://www.tripadvisor.com/Hotels

17. http://www.nature.com/jes/journal/v11/n3/full/7500165a.html

18. https://www.rome2rio.com/blog/2013/01/02/170779446/ran

19. https://en.wikipedia.org/wiki/Haversine formula

20. https://sites.google.com/site/climatetypes/

21. http://www.quotemaster.org/business+meetings

22. Newswise Staff. ”Tips to Avoid Jet Lag, Drowsy Driving During Summer Travel.” Smart News Connection.
Newswise, 02 June 2006. Web. 04 Apr. 2017.

16.2 Graphs for Sensitivity Analysis

20

Team 2017019 Page 21

00.40.3

Percent of Work Loss per Degree Celsius Difference from 22

0.20.1

25

Location by Zone Number

50

20

T
o

ta
l
P

e
rc

e
n

t
o

f
W

o
rk

 L
o

s
s
 (

in
c
lu

d
in

g
 o

th
e

r
fa

c
to

rs
)

15

10

0

5

How Changing the Constant for Temperature Affects Location Choice

100

X: 20

Y: 0.4

Z: 22.96

Figure 24: This plot shows how the scores of the 75 zones for the small meeting change as the difference in
temperature score (dT) receives more weight. Notice how South Chile skyrockets and Novosibirsk remains at
the minimum

0 0.05 0.1 0.15 0.2 0.25

Percent of Work Loss per Degree Celsius Difference from 22

5.4

5.6

5.8

6

6.2

6.4

6.6

6.8

7

7.2

T
o

ta
l
P

e
rc

e
n

t
o

f
W

o
rk

 L
o

s
s
 (

in
c
lu

d
in

g
 o

th
e

r
fa

c
to

rs
)

How Changing the Constant for Temperature Affects Location Choice

Beijing

Novosibirsk

Figure 25: This plot shows how the Percent of Work Loss for Beijing and Novosibirsk for the small meeting
change as the Closeness to 22 degrees Celsius score receives more weight.

21

Team 2017019 Page 22

0 0.05 0.1 0.15 0.2

Percent of Work Loss per mm of Precipitation Difference

6

8

10

12

14

16

18

20

T
o

ta
l
P

e
rc

e
n

t
o

f
W

o
rk

 L
o

s
s
 (

in
c
lu

d
in

g
 o

th
e

r
fa

c
to

rs
)

How Changing the Constant for Precipitation Affects Location Choice

Istanbul

Helsinki

Figure 26: For the big meeting, this plot shows that when more weight is placed on precipitation similarity,
Helsinki becomes a better option than Istanbul.

16.3 Tables

16.3.1 Zones

Table 16.3.1: Displays the relative size of the city selected from each zone and the climate of each zone.

Zone City Size Climate
1 Bethel Small Subarctic
2 Yakutsk Big Subarctic
3 Anchorage Medium Subarctic
4 Surgut Big Subarctic
5 Whitehorse Small Subarctic
6 Seattle Big Subarctic
7 San Francisco Big Marine West Coast North
8 Yellowknife Small Subarctic
9 Calgary Big Cold Semi Arid North
10 Los Angeles Big Warm Semi Arid North
11 Acapulco Medium Tropical Wet/Dry North
12 Chicago Big Humid Continental
13 Atlanta Big Humid Subtropical North
14 Mexico City Big Tropical Wet
15 New York City Big Humid Continental
16 Newark Big Marine West Coast North
17 Bogotá Big Tropical Wet
18 Lima Big Tropical Wet
19 Santiago Big Warm Semiarid South
20 Comodoro Rivadavia Medium Cold Semiarid South
21 Paramaribo Medium Tropical Wet
22 Rio de Janeiro Big Tropical Wet/Dry South
23 São Paulo Big Humid Subtropical South
24 Reykjavik Medium Subarctic
25 London Big Marine West Coast North
26 Lisbon Medium Marine West Coast North
27 Las Palmas de Gran Canaria Medium Arid North
28 Conakry Big Tropical Wet/Dry North
29 Stockholm Big Marine West Coast North
30 Paris Big Marine West Coast North
31 Tripoli Big Arid North

22

Team 2017019 Page 23

Zone City Size Climate
32 Niamey Big Arid North
33 Abuja Big Tropical Wet/Dry North
34 Luanda Big Tropical Wet/Dry South
35 Cape Town Big Warm Semiarid South
36 Helsinki Medium Subarctic
37 Istanbul Big Humid Continental
38 Beirut Big Warm Semiarid North
39 Cairo Big Arid North
40 Khartoum Big Arid North
41 Kampala Big Tropical Wet/Dry North
42 Lusaka Big Warm Semiarid South
43 Maputo Big Warm Semiarid South
44 Perm Big Humid Continental
45 Dubai Big Warm Semiarid North
46 Mogadishu Big Arid South
47 Antananarivo Big Tropical Wet/Dry South
48 Fianaranantsoa Medium Warm Semiarid North
49 Astana Medium Cold Semiarid North
50 Delhi Big Warm Semiarid North
51 Mumbai Big Tropical Wet
52 Novosibirsk Big Humid Continental
53 Urumqi Big Subarctic
54 Kathmandu Big Humid Subtropical North
55 Chennai Big Tropical Wet
56 Ulaanbaatar Big Cold Semiarid North
57 Beijing Big Cold Semiarid North
58 Hong Kong Big Humid Subtropical North
59 Singapore Big Tropical Wet/Dry North
60 Jakarta Big Tropical Wet
61 Perth Big Warm Semiarid South
62 Vladivostok Big Humid Continental
63 Tokyo Big Humid Subtropical North
64 Manila Big Tropical Wet
65 Taluk Ambon Medium Tropical Wet
66 Darwin Small Warm Semiarid North
67 Adelaide Big Arid South
68 Sapporo Big Subarctic
69 Port Moresby Medium Tropical Wet
70 Townsville Small Warm Semiarid South
71 Sydney Big Warm Semiarid South
72 Hobart Medium Marin West Coast South
73 Eastest Russia Small Subarctic
74 Aukland Big Marine West Coast South
75 Wellington Big Marine West Coast South

23

Team 2017019 Page 24

16.3.2 Costs

Table 16.3.2: Displays the average cost to stay in a hotel for one night in a selected city from each zone for 6
and 11 individuals.

Zone City Average Price for 6 Individuals Average Price for 11 Individuals
1 Bethel 1290 2365
2 Yakutsk 1038 1903
3 Anchorage 672 1232
4 Surgut 606 1111
5 Whitehorse 576 1056
6 Seattle 1698 3113
7 San Francisco 1914 3509
8 Yellowknife 918 1683
9 Calgary 840 1540
10 Los Angeles 1776 3256
11 Acapulco 558 1023
12 Chicago 1770 3245
13 Atlanta 1548 2838
14 Mexico City 864 1584
15 New York City 1734 3179
16 Newark 1404 2574
17 Bogotá 1110 2035
18 Lima 1110 2035
19 Santiago 924 1694
20 Comodoro Rivadavia 978 1793
21 Paramaribo 882 1617
22 Rio de Janeiro 1140 2090
23 São Paulo 1956 3586
24 Reykjavik 2136 3916
25 London 1812 3322
26 Lisbon 1116 2046
27 Las Palmas de Gran Canaria 924 1694
28 Conakry 1062 1947
29 Stockholm 1596 2926
30 Paris 1902 3487
31 Tripoli 1764 3234
32 Niamey 954 1749
33 Abuja 1224 2244
34 Luanda 1488 2728
35 Cape Town 1836 3366
36 Helsinki 1122 2057
37 Istanbul 1062 1947
38 Beirut 1866 3421
39 Cairo 1926 3531
40 Khartoum 1152 2112
41 Kampala 870 1595
42 Lusaka 1170 2145
43 Maputo 1398 2563
44 Perm 378 693
45 Dubai 2328 4268
46 Mogadishu 1284 2354
47 Antananarivo 762 1397
48 Fianaranantsoa 750 1375
49 Astana 1362 2497
50 Delhi 1392 2552
51 Mumbai 1200 2200
52 Novosibirsk 492 902
53 Urumqi 450 825
54 Kathmandu 1266 2321
55 Chennai 702 1287

24

Team 2017019 Page 25

Zone City Average Price for 6 Individuals Average Price for 11 Individuals
56 Ulaanbaatar 1380 2530
57 Beijing 1062 1947
58 Hong Kong 1962 3597
59 Singapore 2052 3762
60 Jakarta 1596 2926
61 Perth 1446 2651
62 Vladivostok 714 1309
63 Tokyo 1842 3377
64 Manila 1296 2376
65 Taluk Ambon 252 462
66 Darwin 702 1287
67 Adelaide 1038 1903
68 Sapporo 666 1221
69 Port Moresby 1308 2398
70 Townsville 438 803
71 Sydney 2094 3839
72 Hobart 1410 2585
73 Ossora 636 1166
74 Aukland 1644 3014
75 Wellington 1296 2376

16.4 Final Software

We wrote a ton of code in both MATLAB and Python to model different parts of the algorithm. These different
pieces can be seen in their various stages in the next appendix subsection. However, all of these bits of code
only were built to model the small and big meetings given to us. That is not a true algorithm (at least to us),
because it is not automated. So we set out to make a Python program that only requires latitude/longitude
input and the month of the meeting to produce our ranking.

Most of the program blends together many of our preliminary code bits. But the piece that makes it tick is
the Region Converter function, which converts any lat/long pair into its respective region. Based off of this we
can use all of the various lists we made to gather the different scores.

The most important part of the code for visualization is the printTotalScore function. It takes the rank of
a region and overlays the text over a map on which we photoshopped the regions.

import numpy as np

import math as m

from PIL import ImageFont

from PIL import Image

from PIL import ImageDraw

regionList = [[70,-170],[70,130],[70,-150],[70,70],[70,-130],[50,-130],[30,-130],[70,-110]

,[50,-110],[30,-110],[10,-110],[50,-90],[30,-90],

[10,-90],[50,-70],[30,-70],[10,-70],[-10,-70],[-30,-70],[-50,-70]

,[10,-50],[-10,-50],[-30,-50],[70,-10],[50,-10],[35,-10],[25,-10],[10,-10], #These are the lat/long coordinates for

[70,10],[50,10],[30,10],[15,10],[5,10],[-10,10],[-30,10], #All 75 regions

[70,30],[50,30],[35,30],[25,30],[15,30],[5,30],[-10,30],[-30,30],[50,50]

,[30,50],[10,50],[-10,50],[-30,50],[50,70],[30,70],[10,70],[50,90],[35,90],[25,90]

,[10,90],[50,110],[35,110],[25,110],[10,110],[-10,110],[-30,110],[50,130],

[30,130],[10,130],[-5,130],[-15,130],[-30,130],[50,150],[-5,150],[-15,150]

,[-30,150],[-50,150],[50,170],[-30,170],[-50,170]]

mapCoordList = [(132,40),(558,48),(154,42),(468,46),(181,43),(148,81),(125,125),(212,43),(182,80),(163,125),

(155,170),(217,82),(200,125),(195,170),(252,80),(240,125),(235,170),(231,215),(235,255),(249,298),

(271,168),(272,214),(273,255),(354,42),(350,78),(349,108),(349,135),(347,164),(383,43),(384,79),

(385,119),(388,157),(387,180),(387,210),(387,253),(410,43),(418,80),(422,110),(426,132),(428,157),

(426,178),(424,210),(424,257),(452,84),(462,126),(465,167),(464,212),(461,257),(487,84),

(496,122),(502,167),(523,84),(536,110),(539,133),(542,167),(557,84),(568,110),(574,134),(580,169),

(580,212),(572,257),(587,85),(606,123),(618,166),(620,202),(617,223),(609,255),(628,85),(657,200),

(655,223),(647,257),(622,298),(661,86),(682,256),(652,301)]

25

Team 2017019 Page 26

TWT = [27, 27, 27, 27, 26, 26, 25, 27, 27, 27, 27, 27] #TropWetTemp

TWP = [250, 280, 260, 320, 300, 200, 170, 160, 190, 200, 240, 220]

TDNT = [21, 20, 21, 22, 23, 24, 26, 27, 27, 27, 26, 25] #TropWetDryNorthTemp

TDNP = [10, 10, 10, 30, 100, 200, 300, 550, 470, 200, 105, 15]

TDST = [23, 23, 23, 23, 23, 20, 20, 23, 25, 24, 23, 23] #TropWetDrySouthTemp

MT = [7, 8, 10, 13, 17, 21, 24, 24, 21, 16, 11, 8] #Mediteranean, Temp

MP = [104, 99, 69, 66, 38, 23, 13, 23, 59, 84, 120, 112]

HSNT = [7, 8, 11, 17, 21, 26, 28, 27, 24, 17, 11, 7] #HumiSubNorthTemp

HSNP = [150, 120, 130, 120, 100, 90, 80, 70, 60, 70, 100, 120]

HSST = [28, 27, 24, 17, 11, 7, 7, 8, 11, 17, 21, 26]

TDSP = [225, 220, 230, 110, 10, 0, 0, 5, 25, 90, 185, 230]

HSSP = [70, 60, 70, 70, 100, 120, 150, 120, 130, 120, 100, 80]

MNT = [2, 4, 6, 8, 12, 13, 17, 16, 14, 10, 6, 4] #MariWestCoasNorthTemp

MNP = [140, 120, 100, 60, 40, 50, 20, 30, 60, 120, 140, 150]

MST = [17, 16, 14, 10, 6, 4, 2, 4, 6, 8, 12, 13]

MSP = [20, 30, 60, 120, 140, 150, 140, 120, 100, 60, 40, 50]

HCT = [-7, -5, 3, 10, 15, 20, 23, 22, 18, 12, 5, -3] #HumiContTemp

HCP = [50, 40, 70, 90, 90, 100, 90, 90, 70, 60, 60, 50]

ST = [-43, -39, -25, -5, 5, 12, 15, 11, 5, -7, -30, -40] #SubarcticTemp

SP = [15, 10, 10, 15, 25, 30, 40, 35, 20, 15, 15, 10]

ANT = [13, 14, 17, 20, 23, 26, 27, 27, 25, 23, 21, 15] #Arid, North, Temp

ANP = [3, 2, 1, 1, 0, 0, 0, 0, 0, 0, 2, 3]

AST = [27, 27, 25, 23, 21, 15, 13, 14, 17, 20, 23, 26]

ASP = [0, 0, 0, 0, 2, 3, 3, 2, 1, 1, 0, 0]

WSNT = [14, 17, 20, 24, 26, 27, 28, 28, 25, 22, 18, 16] #WarmSemiNorthTemp

WSNP = [19, 18, 19, 32, 55, 71, 50, 85, 145, 69, 22, 15]

CSNT = [-7, -3, 1, 5, 10, 15, 19, 18, 13, 7, 0, -5] #Cold, Semi, North, Temp

CSNP = [15, 10, 18, 22, 44, 46, 31, 30, 29, 15, 14, 15]

WSST = [28, 28, 25, 22, 18, 16, 14, 17, 20, 24, 26, 27] #WarmSemiNorthTemp

WSSP = [50, 85, 145, 69, 22, 15, 19, 18, 19, 32, 55, 71]

CSST = [19, 18, 13, 7, 0, -5, -7, -3, 1, 5, 10, 15] #ColdSemiNorthTemp

CSSP = [31, 30, 29, 15, 14, 15, 15, 10, 18, 22, 44, 46]

Temp = [ST, ST, ST, ST, ST, ST, MNT, ST, CSNT, WSNT, TDNT, HCT, HSNT, TWT, HCT,

MNT, TWT, TWT, WSST, CSST, TWT, TDST, HSST, ST, MNT, MNT, ANT, TDNT, MNT,

MNT , ANT, ANT, TDNT, TDST, WSST , ST, HCT, WSNT, ANT, ANT, TDNT, TDST, WSST ,

HCT, WSNT, AST, TDST, WSST, CSNT, WSNT, TWT, HCT, ST , HSNT, TWT, CSNT, CSNT,

HSNT, TDNT, TWT , WSST, HCT, HSNT, TWT, TWT , WSST, AST, ST, TWT, WSST, WSST, MST, ST, MST, MST]

Prec = [SP, SP, SP, SP, SP, SP, MNP, SP, CSNP, WSNP, TDNP, HCP, HSNP, TWP, HCP, MNP,

TWP, TWP, WSSP, CSSP, TWP, TDSP, HSSP, SP, MNP, MNP, ANP, TDNP, MNP, MNP , ANP,

ANP, TDNP, TDSP, WSSP , SP, HCP, WSNP, ANP, ANP, TDNP, TDSP, WSSP , HCP, WSNP,

ASP, TDSP, WSSP, CSNP, WSNP, TWP, HCP, SP , HSNP, TWP, CSNP, CSNP, HSNP, TDNP,

TWP , WSSP, HCP, HSNP, TWP, TWP , WSSP, ASP, SP, TWP, WSSP, WSSP, MSP, SP, MSP, MSP]

26

Team 2017019 Page 27

winterTime = [2, 19, 2, 14, 3, 3, 3, 4, 4, 3, 5, 5, 6, 5, 6, 6, 4, 5, 6, 7, 6, 7, 7, 10, 11, 11, 11,

9, 12, 12, 11, 11, 11, 11, 12, 13, 12, 13, 12, 12, 12, 13, 12, 15, 14, 13, 13, 13, 16,

15.5, 15.5, 17, 18, 16.5, 15.5, 18, 18, 18, 18, 17, 18, 20, 19, 18, 19, 19.5, 19.5, 19,

20, 20, 20, 20, 24, 24, 24]

summerTime = [1, 19, 1, 14, 2, 2, 2, 3, 3, 2, 4, 4, 5, 4, 5, 5, 4, 5, 7, 8, 6, 8, 8, 10, 10, 10, 10,

9, 11, 11, 11, 11, 11, 11, 12, 12, 12, 13, 12, 12, 12, 13, 12, 15, 14, 13, 13, 13, 16,

15.5, 15.5, 17, 18, 16.5, 15.5, 18, 18, 18, 18, 17, 19, 20, 19, 19, 20, 19.5, 19.5, 19,

20, 21, 21, 21, 24, 1, 1]

end_city_sizes = [’small’,’big’,’med’,’big’,’small’,’big’,’big’,’small’,’big’,’big’,’med’,’big’,’big’,

’big’,’big’,’big’,’big’,’big’,’big’,’med’,’med’,’big’,’big’,’med’,’big’,’med’,’med’,

’big’,’big’,’big’,’big’,’big’,’big’,’big’,’big’,’med’,’big’,’big’,’big’,’big’,’big’,

’big’,’big’,’big’,’big’,’big’,’big’,’big’,’med’,’med’,’big’,’big’,’big’,’big’,’big’,

’big’,’big’,’big’,’big’,’big’,’big’,’big’,’big’,’big’,’big’,’med’,’small’,’big’,’big’,

’med’,’small’,’big’,’med’,’small’,’big’,’big’]

hotelCosts = [215.0, 173.0, 112.0, 101.0, 96.0, 283.0, 319.0, 153.0, 140.0, 296.0, 93.0, 295.0, 258.0, 144.0,

289.0, 234.0, 185.0, 185.0, 154.0, 163.0, 147.0, 190.0, 326.0, 356.0, 302.0, 186.0, 154.0, 177.0,

266.0, 317.0, 294.0, 159.0, 204.0, 248.0, 306.0, 187.0, 177.0, 311.0, 321.0, 192.0, 145.0, 195.0,

233.0, 63.0, 388.0, 214.0, 127.0, 125.0, 227.0, 232.0, 200.0, 82.0, 75.0, 211.0, 117.0, 230.0,

177.0, 327.0, 342.0, 266.0, 241.0, 119.0, 307.0, 216.0, 42.0, 117.0, 173.0, 111.0, 218.0, 73.0,

349.0, 235.0, 106.0, 274.0, 216.0]

def totalScore(meetingList, month, a , b, c): # last three inputs are the weights

timeScore, STDTimescore = (TZCalculator(meetingList,month))

totalFlightHours = (totalDistanceList(meetingList))/(560)/(len(meetingList))

aveSleepLoss = timeScore + totalFlightHours/2

STDFlightTimes = standardDevList(meetingList)

averageTempDiff, averagePrecDiff, closeTo_22, STDTempDiff, STDPrecDiff = climateCalculator(meetingList, month)

totalCost1 = totalCost(meetingList)

productivityScore = averageTempDiff/10 + averagePrecDiff/100 + (abs(closeTo_22))*(11/100) + aveSleepLoss*(3/4)

equalizedScore = STDTempDiff/10 + STDPrecDiff/100 + (abs(closeTo_22))*(11/100) + STDTimescore*(3/4) + STDFlightTimes*(3/4)

costScore = totalCost1 * 0.002

totalScores = a*productivityScore + b*equalizedScore + c*costScore

return totalScores

class TravelTime():

"""A Simple attempt to model the travel time of an airplane flight"""

def __init__(self, miles,layovers,inefficiency = 1.1):

"""Initialize the trip’s attributes"""

self.miles = miles

self.inefficiency = inefficiency

self.layovers = layovers

self.flight_speed = 560

self.avg_layover_time = 5

self.takeoff_time = 0.2

self.landing_time = 0.32

self.drive_time = 5

if (layovers == 0):

self.flight_time = self.miles / self.flight_speed

27

Team 2017019 Page 28

else:

self.flight_time = (self.miles*self.inefficiency) / self.flight_speed

self.layover_time = self.avg_layover_time*self.layovers

self.extra_time = (self.takeoff_time + self.landing_time)*(self.layovers + 1)

self.flight_time = self.flight_time + self.extra_time

self.travel_time = self.layover_time + self.flight_time + self.drive_time

def get_time(self):

print("The trip will take " + str(self.travel_time) + " hours.")

def get_raw_time(self):

print("The flight time is " + str(self.flight_time) + " hours.")

class Layovers():

"""A simple attempt to model how many layovers a flight path has"""

def __init__(self, start_city_size, end_city_size):

self.start_city = start_city_size

self.end_city = end_city_size

def get_layovers(self):

if(self.start_city == "big" and self.end_city == "big"):

return 1

elif((self.start_city == "big" and self.end_city == "med") or (self.start_city == "med" and self.end_city == "big")):

return 1

elif((self.start_city == "big" and self.end_city == "small") or (self.start_city == "small" and self.end_city == "big")):

return 2

elif(self.start_city == "med" and self.end_city == "med"):

return 2

elif((self.start_city == "med" and self.end_city == "small") or (self.start_city == "small" and self.end_city == "med")):

return 3

elif(self.start_city == "small" and self.end_city == "small"):

return 3

def totalTravelTime(meetingList):

distances = totalDistanceList(meetingList)

i=0

total_times = []

for distance in distances:

total_layover_time = 0

for j in range(0,len(meetingList)):

start_city_size = ’big’

my_layovers = Layovers(start_city_size,end_city_sizes[i])

total_layover_time = (my_layovers.get_layovers() - 1) * 5.52 + total_layover_time

my_trip = TravelTime(distance,1)

total_time = my_trip.travel_time + total_layover_time

total_times.append(total_time)

i = i+1

total_times2 = (np.array(total_times))

return total_times2

def totalCost(meetingList):

distances = totalDistanceList(meetingList)

i = 0

total_flight_costs = []

for distance in distances:

for i in range(0,len(meetingList)):

start_city_size = ’big’

28

Team 2017019 Page 29

my_layovers = Layovers(start_city_size,end_city_sizes[i])

flight_start_cost= 50*(my_layovers.get_layovers()+1)

total_flight_costs.append(flight_start_cost +(.168*distance*1.1))

i = i + 1

total_costs = []

i=0

for cost in hotelCosts:

total_costs.append(cost * 3 * (len(meetingList)) + 2*total_flight_costs[i])

i = i + 1

totalCosts = np.array(total_costs)

return totalCosts

def TZCalculator(meetingList,month):

homeList = regionConverter(meetingList) #gets the lat/long of region for each location

homeList = homeList.astype(int)

homeList = homeList.tolist()

for i in range(0,len(homeList)):

if homeList[i][0] == -9:

homeList[i][0] = -10

if (4 <= month) and (month <= 9):

daylightSave = summerTime

elif ((10 <= month) and (month <= 12)) or ((1 <= month) and (month <= 3)):

daylightSave = winterTime

else:

print("Error enter number between 1-12")

regionNumList = []

for i in range(0,len(homeList)): # obtains list with the regions of the locations

regionNumList.append((regionList.index(homeList[i])) + 1)

timeZones = np.zeros(shape=(75,1))

tzSTD = np.zeros(shape=(75,1))

for i in range(0,75): #calculate differences in climate

counter = 0

counter3 = np.zeros(shape=(len(regionNumList),1))

for j in range(0,len(regionNumList)):

num = daylightSave[i] - daylightSave[regionNumList[j] -1]

if (num >= 12):

num = abs((num-24)/2)

elif (num < -12):

num = num+24

elif(num < 0):

num = abs(num)/2

counter = counter + num

counter3[j] = num

timeZones[i] = counter

tzSTD[i] = np.std(counter3)

timeZones1 = timeZones/len(regionNumList)

return timeZones1, tzSTD

29

Team 2017019 Page 30

def climateCalculator(meetingList, month):

homeList = regionConverter(meetingList) #gets the lat/long of region for each location

homeList = homeList.astype(int)

homeList = homeList.tolist()

for i in range(0,len(homeList)):

if homeList[i][0] == -9:

homeList[i][0] = -10

regionNumList = []

for i in range(0,len(homeList)): # obtains list with the regions of the locations

regionNumList.append((regionList.index(homeList[i])) + 1)

tempDiff = np.zeros(shape = (75,1))

precDiff = np.zeros(shape = (75,1))

closeTo_22 = np.zeros(shape = (75,1))

tempDiffSTD = np.zeros(shape = (75,1))

precDiffSTD = np.zeros(shape = (75,1))

for i in range(0,75): #calculate differences in climate

counter1 = 0

counter2 = 0

counter3 = np.zeros(shape=(len(regionNumList),1))

counter4 = np.zeros(shape=(len(regionNumList),1))

for j in range(0,len(regionNumList)):

counter1 = counter1 + (abs((Temp[i][month-1]) - (Temp[(regionNumList[j])-1][month-1])))

counter2 = counter2 + (abs(Prec[i][month-1] - Prec[regionNumList[j]-1][month-1]))

counter3[j] = abs((Temp[i][month-1]) - (Temp[(regionNumList[j])-1][month-1]))

counter4[j] = abs(Prec[i][month-1] - Prec[regionNumList[j]-1][month-1])

counter3 = np.std(counter3)

counter4 = np.std(counter4)

closeTo_22[i] = Temp[i][month-1] - 22

tempDiff[i] = counter1

precDiff[i] = counter2

tempDiffSTD[i] = counter3

precDiffSTD[i] = counter4

averageTempDiff = tempDiff/(len(regionNumList))

averagePrecDiff = precDiff/(len(regionNumList))

return averageTempDiff, averagePrecDiff, closeTo_22, tempDiffSTD, precDiffSTD

def regionConverter(meetingList): #converts the home lat/long coordinates to a region

meetingList_np = np.array(meetingList) #turns meetingList into a numpy array

for i in range(0,len(meetingList_np)): #converts the numpy array to within 20

if (((0 < meetingList[i][0]) and (meetingList[i][0] < 20)) and ((0 < meetingList[i][1]) and (meetingList[i][1]) < 40)): #accounts for split regions

meetingList_np[i][0] = meetingList_np[i][0] + 5 - (meetingList_np[i][0] % 10)

elif (((20 < meetingList[i][0]) and (meetingList[i][0] < 40)) and ((20 < meetingList[i][1]) and (meetingList[i][1]) < 40)): #accounts for split regions

meetingList_np[i][0] = meetingList_np[i][0] + 5 - (meetingList_np[i][0] % 10)

elif (((20 < meetingList[i][0]) and (meetingList[i][0] < 40)) and ((80 < meetingList[i][1]) and (meetingList[i][1]) < 120)): #accounts for split regions

meetingList_np[i][0] = meetingList_np[i][0] + 5 - (meetingList_np[i][0] % 10)

elif (((-20 < meetingList[i][0]) and (meetingList[i][0] < 0)) and ((120 < meetingList[i][1]) and (meetingList[i][1]) < 160)): #accounts for split regions

meetingList_np[i][0] = meetingList_np[i][0] + 5 - (meetingList_np[i][0] % 10)

30

Team 2017019 Page 31

elif meetingList_np[i][0] < 0:

if (abs(meetingList_np[i][0]) - (abs(meetingList_np[i][0])) % 20) % 20 == 0: # converts to either 10 or 0

meetingList_np[i][0] = -((abs(meetingList_np[i][0])) + 10 - ((abs(meetingList_np[i][0])) % 20))

else:

meetingList_np[i][0] = -(abs(meetingList_np[i][0]) - ((abs(meetingList_np[i][0])) % 20))

elif meetingList_np[i][0] > 0:

if (meetingList_np[i][0] - meetingList_np[i][0] % 20) % 20 == 0: # converts to either 10 or 0

meetingList_np[i][0] = meetingList_np[i][0] + 10 - (meetingList_np[i][0] % 20)

else:

meetingList_np[i][0] = meetingList_np[i][0] - (meetingList_np[i][0] % 20)

else:

meetingList[i][0] = meetingList[i][0] + 10

now do it for the second item

if meetingList_np[i][1] < 0:

if (abs(meetingList_np[i][1]) - (abs(meetingList_np[i][1])) % 20) % 20 == 0: # converts to either 10 or 0

meetingList_np[i][1] = -((abs(meetingList_np[i][1])) + 10 - ((abs(meetingList_np[i][1])) % 20))

else:

meetingList_np[i][1] = -(abs(meetingList_np[i][1]) - ((abs(meetingList_np[i][1])) % 20))

elif meetingList_np[i][1] > 0:

if (meetingList_np[i][1] - meetingList_np[i][1] % 20) % 20 == 0: # converts to either 10 or 0

meetingList_np[i][1] = meetingList_np[i][1] + 10 - (meetingList_np[i][1] % 20)

else:

meetingList_np[i][1] = meetingList_np[i][1] - (meetingList_np[i][1] % 20)

else:

meetingList[i][1] = meetingList[i][1] + 10

return meetingList_np

def totalDistanceList(meetingList): #returns a list of total distances

sumArray = np.zeros(shape=(75,1)) #this initializes an array that holds the total distances

for i in range(0,len(regionList)): #loop through every region

distArray = np.zeros(shape=(len(meetingList),1)) #sets up array for hold distances for each attendee

for j in range(0,len(meetingList)): #loop through every attendee

d = disty(regionList[i] , meetingList[j]) #calculate distance

distArray[j] = d #append the distance to distArray

sumArray[i] = np.sum(distArray)

return sumArray

def standardDevList(meetingList): #returns a list of standard deviations

stdArray = np.zeros(shape=(75,1)) #this initializes an array that holds the standard deviations

for i in range(0,len(regionList)): #loop through every region

distArray = np.zeros(shape=(len(meetingList),1)) #sets up array to hold distances for each attendee

for j in range(0,len(meetingList)): #loop through every attendee

d = disty(regionList[i] , meetingList[j]) #calculate distance

distArray[j] = d #append the distance to distArray

stdArray[i] = np.std(distArray/560)

return stdArray

31

Team 2017019 Page 32

def scoreRank(meetingList,month,a,b,c):

distList_np = totalScore(meetingList,month,a,b,c) #creates np array

distList = distList_np.tolist() #converts to list

d = {} #creates dictionary

for i in range(0,len(distList)): #fills the dictionary with corresponding distance/region

num = str(distList[i])

d[num] = i+1

sortedDistList = sorted(distList) #sorts distList

#print(sortedDistList)

#print(d)

rankedDict = {}

for i in range(0,len(sortedDistList)): # the rank of each region is contained in the list compartment of that region

num = str(sortedDistList[i]) #puts a distance into a variable to be used in dict

rankedDict[str(d[num])] = str(i+1) #each rank is matched up with the corresponding region from dict

return rankedDict

def disty(region, home): #this function calculates the distance between 2 lat/long points

radius = 3958.756

regionLat = m.radians(region[0])

homeLat = m.radians(home[0])

changeLat = m.radians(home[0] - region[0])

changeLon = m.radians(home[1] - region[1])

haversine = (((m.sin(changeLat/2))** 2)) + m.cos(regionLat) * m.cos(homeLat) * (((m.sin(changeLon/2))** 2))

dist = 2 * radius * (m.asin((m.sqrt(haversine))))

return dist

def printTotalScore(meetingList,month,a,b,c):

rankedDict = scoreRank(meetingList,month,a,b,c)

img = Image.open("map.jpg")

font = ImageFont.truetype("ADOBEHEITISTD-REGULAR.OTF", 15)

draw = ImageDraw.Draw(img)

for i in range(0,75):

draw.text(mapCoordList[i], str(rankedDict[str(i+1)]), (255,0,0), font=font)

img.show()

img.save("score.jpg")

smallMeetingList = [[36.600238,-121.894676],[52.142736,6.196058],[-37.813628,144.963058],

[31.230416,121.473701],[22.396428,114.109497],[55.755826,37.617300]]

bigMeetingList = [[42.360082,-71.058880],[42.360082,-71.058880],[1.352083,103.819836],

[39.904211,116.407395],[22.396428,114.109497],[22.396428,114.109497],[55.755826,37.617300],

[52.090737,5.121420],[52.229676,21.012229],[55.676097,12.568337],[-37.813628,144.963058]]

g20 = [[-34.603684,-58.381559],[-35.280937,149.130009],[-15.794157,-47.882529],[45.421530,-75.697193],

[39.904211,116.407395],[48.856614,2.352222],[52.520007,13.404954],[28.613939,77.209021],[-6.174465,106.822745],

[41.902783,12.496366],[35.689487,139.691706],[37.566535,126.977969],[19.432608,-99.133208],[55.755826,37.617300],

[24.713552,46.675296],[-33.924869,18.424055],[39.933363,32.859742],[51.507351,-0.127758],[38.907192,-77.036871],

[50.850346,4.351721]]

print(printTotalScore(g20, 7,1,0,0))

#print(regionConverter(g20))

print(TZCalculator(g20, 7))

32

Team 2017019 Page 33

16.5 Computer Code

16.5.1 Distances

Our original Python code that automated distance calculations and utilized the law of haversines to find the
total distance from a region to a certain location. A snapshot of the code is shown below.

def totalDistanceList(meetingList): #returns a list of total distances

sumArray = np.zeros(shape=(75,1)) #this initializes an array that holds the total distances

for i in range(0,len(regionList)): #loop through every region

distArray = np.zeros(shape=(len(meetingList),1)) #sets up array for hold distances for each attendee

for j in range(0,len(meetingList)): #loop through every attendee

d = disty(regionList[i] , meetingList[j]) #calculate distance

distArray[j] = d #append the distance to distArray

sumArray[i] = np.sum(distArray)

return sumArray

def scoreRank(meetingList,month):

distList_np = totalScore(meetingList,month) #creates np array

distList = distList_np.tolist() #converts to list

d = {} #creates dictionary

for i in range(0,len(distList)): #fills the dictionary with corresponding distance/region

num = str(distList[i])

d[num] = i+1

sortedDistList = sorted(distList) #sorts distList

#print(sortedDistList)

#print(d)

rankedDict = {}

for i in range(0,len(sortedDistList)): # the rank of each region is contained in the list compartment of that region

num = str(sortedDistList[i]) #puts a distance into a variable to be used in dict

rankedDict[str(d[num])] = str(i+1) #each rank is matched up with the corresponding region from dict

return rankedDict

def disty(region, home): #this function calculates the distance between 2 lat/long points

radius = 3958.756

regionLat = m.radians(region[0])

homeLat = m.radians(home[0])

changeLat = m.radians(home[0] - region[0])

changeLon = m.radians(home[1] - region[1])

haversine = (((m.sin(changeLat/2))** 2)) + m.cos(regionLat) * m.cos(homeLat) * (((m.sin(changeLon/2))** 2))

dist = 2 * radius * (m.asin((m.sqrt(haversine))))

return dist

def printTotalScore(meetingList,month):

rankedDict = scoreRank(meetingList,month)

img = Image.open("map.jpg")

font = ImageFont.truetype("ADOBEHEITISTD-REGULAR.OTF", 15)

draw = ImageDraw.Draw(img)

for i in range(0,75):

draw.text(mapCoordList[i], str(rankedDict[str(i+1)]), (255,0,0), font=font)

img.show()

img.save("score.jpg")

def showMap():

#rankedDict = scoreRank(meetingList,month)

img = Image.open("map.jpg")

33

Team 2017019 Page 34

font = ImageFont.truetype("ADOBEHEITISTD-REGULAR.OTF", 15)

draw = ImageDraw.Draw(img)

for i in range(0,75):

draw.text(mapCoordList[i], str(i+1), (255,0,0), font=font)

img.show()

img.save("region_map.jpg")

smallMeetingList = [[36.600238,-121.894676],[52.142736,6.196058],[-37.813628,144.963058],

[31.230416,121.473701],[22.396428,114.109497],[55.755826,37.617300]]

bigMeetingList = [[42.360082,-71.058880],[42.360082,-71.058880],[1.352083,103.819836],

[39.904211,116.407395],[22.396428,114.109497],[22.396428,114.109497],[55.755826,37.617300],

[52.090737,5.121420],[52.229676,21.012229],[55.676097,12.568337],[-37.813628,144.963058]]

#print(printDistRanks(smallMeetingList))

#print("middle")

#print(printDistRanks(bigMeetingList))

#print(climateCalculator(smallMeetingList, 6))

print(printTotalScore(smallMeetingList, 6))

#print(printTotalScore(bigMeetingList,1))

16.5.2 Time Zones

We created a MATLAB program that calculated the resultant vector given the time zone number from the
numbering system described in Subsection 4.1. The program then converted the radian value of the direction
of the resultant vector into the corresponding time zone. This time zone would be the most equal time zone in
terms of time zones crossed. Next we devised a MATLAB program that calculated the total time zones crossed
by all attendees for a given time zone. The program accounted for the lessened repercussions of westward travel
when totaling the time zones. The provided codes have the inputs already in the correct places for the respective
small and large meetings.

Code for determining the most efficient time zone (small meeting):

%Input Home Time Zone%

HoTiZo1 = 16;

%Input Home Time Zone%

HoTiZo2 = 1;

%Input Home Time Zone%

HoTiZo3 = 10;

%Input Home Time Zone%

HoTiZo4 = 8;

%Input Home Time Zone%

HoTiZo5 = 8;

%Input Home Time Zone%

HoTiZo6 = 3;

Htz1 = HoTiZo1 .*15;

Htz2 = HoTiZo2 .*15;

Htz3 = HoTiZo3 .*15;

Htz4 = HoTiZo4 .*15;

Htz5 = HoTiZo5 .*15;

Htz6 = HoTiZo6 .*15;

x = cos(Htz1.*pi./180) + cos(Htz2.*pi./180) + cos(Htz3.*pi./180) + cos(Htz4.*pi./180) + cos(Htz5.*pi./180) + cos(Htz6.*pi./180) ;

y = sin(Htz1.*pi./180) + sin(Htz2.*pi./180) + sin(Htz3.*pi./180) + sin(Htz4.*pi./180) + sin(Htz5.*pi./180) + sin(Htz6.*pi./180);

a = y./x;

if x < 0

b = atan(a).*180./pi + 180

elseif y > 0

b = atan(a) .*180./pi

elseif y < 0

b = 360 + atan(a).*180./pi

end

34

Team 2017019 Page 35

if b < 7.5

TiZo = 0

elseif b > 352.5

TiZo = 0

elseif b < 22.5 & b > 7.5

TiZo = 1

elseif b < 37.5 & b > 22.5

TiZo = 2

elseif b < 52.5 & b > 37.5

TiZo = 3

elseif b < 67.5 & b > 52.5

TiZo = 4

elseif b < 82.5 & b > 67.5

TiZo = 5

elseif b < 97.5 & b > 82.5

TiZo = 6

elseif b < 112.5 & b > 97.5

TiZo = 7

elseif b < 127.5 & b > 112.5

TiZo = 8

elseif b < 142.5 & b > 127.5

TiZo = 9

elseif b < 157.5 & b > 142.5

TiZo = 10

elseif b < 172.5 & b > 157.5

TiZo = 11

elseif b < 197.5 & b > 172.5

TiZo = 12

elseif b < 212.5 & b > 197.5

TiZo = 13

elseif b < 227.5 & b > 212.5

TiZo = 14

elseif b < 242.5 & b > 227.5

TiZo = 15

elseif b < 257.5 & b > 242.5

TiZo = 17

elseif b < 272.5 & b > 257.5

TiZo = 18

elseif b < 297.5 & b > 272.5

TiZo = 19

elseif b < 312.5 & b > 297.5

TiZo = 20

elseif b < 327.5 & b > 312.5

TiZo = 21

elseif b < 342.5 & b > 327.5

TiZo = 22

elseif b < 357.5 & b > 342.5

TiZo = 23

end

%% Total Number of Time Zone Changes for the Small Meeting

Time_Zone = 15;

w1 = HoTiZo1 - Time_Zone;

w2 = HoTiZo2 - Time_Zone;

w3 = HoTiZo3 - Time_Zone;

w4 = HoTiZo4 - Time_Zone;

w5 = HoTiZo5 - Time_Zone;

w6 = HoTiZo6 - Time_Zone;

if abs(w1) < 12

Rtz1 = w1

elseif abs(w1) > 12 & HoTiZo1 > Time_Zone

35

Team 2017019 Page 36

Rtz1 = Time_Zone+24 -HoTiZo1

elseif abs(w1) > 12 & Time_Zone > HoTiZo1

Rtz1 = HoTiZo1 + 24 - Time_Zone

end

if abs(w2) < 12

Rtz2 = w2

elseif abs(w2) > 12 & HoTiZo2 > Time_Zone

Rtz2 = Time_Zone+24 -HoTiZo2

elseif abs(w2) > 12 & Time_Zone > HoTiZo2

Rtz2 = HoTiZo2 + 24 - Time_Zone

end

if abs(w3) < 12

Rtz3 = w3

elseif abs(w3) > 12 & HoTiZo3 > Time_Zone

Rtz3 = Time_Zone+24 -HoTiZo3

elseif abs(w3) > 12 & Time_Zone > HoTiZo3

Rtz3 = HoTiZo3 + 24 - Time_Zone

end

if abs(w4) < 12

Rtz4 = w4

elseif abs(w4) > 12 & HoTiZo4 > Time_Zone

Rtz4 = Time_Zone+24 -HoTiZo4

elseif abs(w4) > 12 & Time_Zone > HoTiZo4

Rtz4 = HoTiZo4 + 24 - Time_Zone

end

if abs(w5) < 12

Rtz5 = w5

elseif abs(w5) > 12 & HoTiZo5 > Time_Zone

Rtz5 = Time_Zone+24 -HoTiZo5

elseif abs(w5) > 12 & Time_Zone > HoTiZo5

Rtz5 = HoTiZo5 + 24 - Time_Zone

end

if abs(w6) < 12

Rtz6 = w6

elseif abs(w6) > 12 & HoTiZo6 > Time_Zone

Rtz6 = Time_Zone+24 -HoTiZo6

elseif abs(w6) > 12 & Time_Zone > HoTiZo6

Rtz6 = HoTiZo6 + 24 - Time_Zone

end

if Rtz1 < 0

Ftz1 = abs(Rtz1)./2

elseif Rtz1 >= 0

Ftz1 = abs(Rtz1)

end

if Rtz2 < 0

Ftz2 = abs(Rtz2)./2

elseif Rtz2 >= 0

Ftz2 = abs(Rtz2)

end

if Rtz3 < 0

Ftz3 = abs(Rtz3)./2

elseif Rtz3 >= 0

Ftz3 = abs(Rtz3)

end

if Rtz4 < 0

Ftz4 = abs(Rtz4)./2

elseif Rtz4 >= 0

Ftz4 = abs(Rtz4)

end

if Rtz5 < 0

Ftz5 = abs(Rtz5)./2

36

Team 2017019 Page 37

elseif Rtz5 >= 0

Ftz5 = abs(Rtz5)

end

if Rtz6 < 0

Ftz6 = abs(Rtz6)./2

elseif Rtz6 >= 0

Ftz6 = abs(Rtz6)

end

TotalTZChanges = Ftz1 + Ftz2 + Ftz3 + Ftz4 + Ftz5 + Ftz6

Code for determining the most efficient time zone (large meeting):

%Input Home Time Zone’s Degree%

HoTiZo1 = 20

%Input Home Time Zone’s Degree%

HoTiZo2 = 20

%Input Home Time Zone’s Degree%

HoTiZo3 = 8

%Input Home Time Zone’s Degree%

HoTiZo4 = 8

%Input Home Time Zone’s Degree%

HoTiZo5 = 8

%Input Home Time Zone’s Degree%

HoTiZo6 = 8

%Input Home Time Zone’s Degree%

HoTiZo7 = 3

%Input Home Time Zone’s Degree%

HoTiZo8 = 2

%Input Home Time Zone’s Degree%

HoTiZo9 = 2

%Input Home Time Zone’s Degree%

HoTiZo10 = 2

%Input Home Time Zone’s Degree%

HoTiZo11 = 10

Htz1 = HoTiZo1.*15

Htz2 = HoTiZo2.*15

Htz3 = HoTiZo3.*15

Htz4 = HoTiZo4.*15

Htz5 = HoTiZo5.*15

Htz6 = HoTiZo6.*15

Htz7 = HoTiZo7.*15

Htz8 = HoTiZo8.*15

Htz9 = HoTiZo9.*15

Htz10 = HoTiZo10.*15

Htz11 = HoTiZo11.*15

x = cos(Htz1.*pi./180) + cos(Htz2.*pi./180) + cos(Htz3.*pi./180) + cos(Htz4.*pi./180) + cos(Htz5.*pi./180) + cos(Htz6.*pi./180) + cos(Htz7.*pi./180) + cos(Htz8.*pi./180) + cos(Htz9.*pi./180) + cos(Htz10.*pi./180) + cos(Htz11.*pi./180);

y = sin(Htz1.*pi./180) + sin(Htz2.*pi./180) + sin(Htz3.*pi./180) + sin(Htz4.*pi./180) + sin(Htz5.*pi./180) + sin(Htz6.*pi./180) + sin(Htz7.*pi./180) + sin(Htz8.*pi./180) + sin(Htz9.*pi./180) + sin(Htz10.*pi./180) + sin(Htz11.*pi./180);

a = y./x;

if x < 0

b = atan(a).*180./pi + 180

elseif y > 0

b = atan(a) .*180./pi

elseif y < 0

b = 360 + atan(a).*180./pi

end

if b < 7.5

TiZo = 0

elseif b > 352.5

TiZo = 0

elseif b < 22.5 & b > 7.5

TiZo = 1

elseif b < 37.5 & b > 22.5

37

Team 2017019 Page 38

TiZo = 2

elseif b < 52.5 & b > 37.5

TiZo = 3

elseif b < 67.5 & b > 52.5

TiZo = 4

elseif b < 82.5 & b > 67.5

TiZo = 5

elseif b < 97.5 & b > 82.5

TiZo = 6

elseif b < 112.5 & b > 97.5

TiZo = 7

elseif b < 127.5 & b > 112.5

TiZo = 8

elseif b < 142.5 & b > 127.5

TiZo = 9

elseif b < 157.5 & b > 142.5

TiZo = 10

elseif b < 172.5 & b > 157.5

TiZo = 11

elseif b < 197.5 & b > 172.5

TiZo = 12

elseif b < 212.5 & b > 197.5

TiZo = 13

elseif b < 227.5 & b > 212.5

TiZo = 14

elseif b < 242.5 & b > 227.5

TiZo = 15

elseif b < 257.5 & b > 242.5

TiZo = 17

elseif b < 272.5 & b > 257.5

TiZo = 18

elseif b < 297.5 & b > 272.5

TiZo = 19

elseif b < 312.5 & b > 297.5

TiZo = 20

elseif b < 327.5 & b > 312.5

TiZo = 21

elseif b < 342.5 & b > 327.5

TiZo = 22

elseif b < 357.5 & b > 342.5

TiZo = 23

end

%% Total Time Zone Changes

Time_Zone = 2;

w1 = HoTiZo1 - Time_Zone;

w2 = HoTiZo2 - Time_Zone;

w3 = HoTiZo3 - Time_Zone;

w4 = HoTiZo4 - Time_Zone;

w5 = HoTiZo5 - Time_Zone;

w6 = HoTiZo6 - Time_Zone;

w7 = HoTiZo7 - Time_Zone;

w8 = HoTiZo8 - Time_Zone;

w9 = HoTiZo9 - Time_Zone;

w10 = HoTiZo10 - Time_Zone;

w11 = HoTiZo11 - Time_Zone;

if abs(w1) < 12

Rtz1 = w1

elseif abs(w1) > 12 & HoTiZo1 > Time_Zone

Rtz1 = Time_Zone+24 -HoTiZo1

elseif abs(w1) > 12 & Time_Zone > HoTiZo1

Rtz1 = HoTiZo1 + 24 - Time_Zone

38

Team 2017019 Page 39

end

if abs(w2) < 12

Rtz2 = w2

elseif abs(w2) > 12 & HoTiZo2 > Time_Zone

Rtz2 = Time_Zone+24 -HoTiZo2

elseif abs(w2) > 12 & Time_Zone > HoTiZo2

Rtz2 = HoTiZo2 + 24 - Time_Zone

end

if abs(w3) < 12

Rtz3 = w3

elseif abs(w3) > 12 & HoTiZo3 > Time_Zone

Rtz3 = Time_Zone+24 -HoTiZo3

elseif abs(w3) > 12 & Time_Zone > HoTiZo3

Rtz3 = HoTiZo3 + 24 - Time_Zone

end

if abs(w4) < 12

Rtz4 = w4

elseif abs(w4) > 12 & HoTiZo4 > Time_Zone

Rtz4 = Time_Zone+24 -HoTiZo4

elseif abs(w4) > 12 & Time_Zone > HoTiZo4

Rtz4 = HoTiZo4 + 24 - Time_Zone

end

if abs(w5) < 12

Rtz5 = w5

elseif abs(w5) > 12 & HoTiZo5 > Time_Zone

Rtz5 = Time_Zone+24 -HoTiZo5

elseif abs(w5) > 12 & Time_Zone > HoTiZo5

Rtz5 = HoTiZo5 + 24 - Time_Zone

end

if abs(w6) < 12

Rtz6 = w6

elseif abs(w6) > 12 & HoTiZo6 > Time_Zone

Rtz6 = Time_Zone+24 -HoTiZo6

elseif abs(w6) > 12 & Time_Zone > HoTiZo6

Rtz6 = HoTiZo6 + 24 - Time_Zone

end

if abs(w7) < 12

Rtz7 = w7

elseif abs(w7) > 12 & HoTiZo7 > Time_Zone

Rtz7 = Time_Zone+24 -HoTiZo7

elseif abs(w7) > 12 & Time_Zone > HoTiZo7

Rtz7 = HoTiZo7 + 24 - Time_Zone

end

if abs(w8) < 12

Rtz8 = w8

elseif abs(w8) > 12 & HoTiZo8 > Time_Zone

Rtz8 = Time_Zone+24 -HoTiZo8

elseif abs(w8) > 12 & Time_Zone > HoTiZo8

Rtz8 = HoTiZo8 + 24 - Time_Zone

end

if abs(w9) < 12

Rtz9 = w9

elseif abs(w9) > 12 & HoTiZo9 > Time_Zone

Rtz1 = Time_Zone+24 -HoTiZo9

elseif abs(w9) > 12 & Time_Zone > HoTiZo9

Rtz9 = HoTiZo9 + 24 - Time_Zone

end

if abs(w10) < 12

Rtz10 = w10

elseif abs(w10) > 12 & HoTiZo10 > Time_Zone

Rtz10 = Time_Zone+24 -HoTiZo10

39

Team 2017019 Page 40

elseif abs(w10) > 12 & Time_Zone > HoTiZo10

Rtz1 = HoTiZo10 + 24 - Time_Zone

end

if abs(w11) < 12

Rtz11 = w11

elseif abs(w11) > 12 & HoTiZo11 > Time_Zone

Rtz11 = Time_Zone+24 -HoTiZo11

elseif abs(w11) > 12 & Time_Zone > HoTiZo11

Rtz1 = HoTiZo11 + 24 - Time_Zone

end

if Rtz1 < 0

Ftz1 = abs(Rtz1)./2

elseif Rtz1 >= 0

Ftz1 = abs(Rtz1)

end

if Rtz2 < 0

Ftz2 = abs(Rtz2)./2

elseif Rtz2 >= 0

Ftz2 = abs(Rtz2)

end

if Rtz3 < 0

Ftz3 = abs(Rtz3)./2

elseif Rtz3 >= 0

Ftz3 = abs(Rtz3)

end

if Rtz4 < 0

Ftz4 = abs(Rtz4)./2

elseif Rtz4 >= 0

Ftz4 = abs(Rtz4)

end

if Rtz5 < 0

Ftz5 = abs(Rtz5)./2

elseif Rtz5 >= 0

Ftz5 = abs(Rtz5)

end

if Rtz6 < 0

Ftz6 = abs(Rtz6)./2

elseif Rtz6 >= 0

Ftz6 = abs(Rtz6)

end

if Rtz7 < 0

Ftz7 = abs(Rtz7)./2

elseif Rtz7 >= 0

Ftz7 = abs(Rtz7)

end

if Rtz8 < 0

Ftz8 = abs(Rtz8)./2

elseif Rtz8 >= 0

Ftz8 = abs(Rtz8)

end

if Rtz9 < 0

Ftz9 = abs(Rtz9)./2

elseif Rtz9 >= 0

Ftz9 = abs(Rtz9)

end

if Rtz10 < 0

Ftz10 = abs(Rtz10)./2

elseif Rtz10 >= 0

Ftz10 = abs(Rtz10)

end

if Rtz11 < 0

40

Team 2017019 Page 41

Ftz11 = abs(Rtz11)./2

elseif Rtz11 >= 0

Ftz11 = abs(Rtz11)

end

TotalTZChanges = Ftz1 + Ftz2 + Ftz3 + Ftz4 + Ftz5 + Ftz6 + Ftz7 + Ftz8 + Ftz9 + Ftz10 + Ftz11

16.5.3 Travel Time Program

Using Python, we created a function in which we would plug the distance between two locations and the number
of layovers into the equation described in the Travel Time section. The program then gave us the time of the
trip in hours. Next, we created a function from figure 4 that would be given the size of the start and end cities
and would spit out the number of layovers involved in the plane trip. A list with the sizes of the attendees’
cities and a list of the sizes of all of the possible end cities was put into the function, and it spit out a list with
the number of layovers it took to get between each pair of cities. This list and a list of all the distances from
each starting city to each zone was plugged into the original function to give us a list containing the total hours
spent in a flight trip to each region. We then plotted this list on a graph for easy viewing so we could analyze
the results.

class TravelTime():

"""A Simple attempt to model the travel time of an airplane flight"""

def __init__(self, miles,layovers,inefficiency = 1.1):

"""Initialize the trip’s attributes"""

self.miles = miles

self.inefficiency = inefficiency

self.layovers = layovers

self.flight_speed = 560

self.avg_layover_time = 5

self.takeoff_time = 0.2

self.landing_time = 0.32

self.drive_time = 5

if (layovers == 0):

self.flight_time = self.miles / self.flight_speed

else:

self.flight_time = (self.miles*self.inefficiency) / self.flight_speed

self.layover_time = self.avg_layover_time*self.layovers

self.extra_time = (self.takeoff_time + self.landing_time)*(self.layovers + 1)

self.flight_time = self.flight_time + self.extra_time

self.travel_time = self.layover_time + self.flight_time + self.drive_time

def get_time(self):

print("The trip will take " + str(self.travel_time) + " hours.")

def get_raw_time(self):

print("The flight time is " + str(self.flight_time) + " hours.")

class Layovers():

"""A simple attempt to model how many layovers a flight path has"""

def __init__(self, start_city_size, end_city_size):

self.start_city = start_city_size

self.end_city = end_city_size

def get_layovers(self):

if(self.start_city == "big" and self.end_city == "big"):

return 1

elif((self.start_city == "big" and self.end_city == "med") or (self.start_city == "med" and self.end_city == "big")):

return 1

elif((self.start_city == "big" and self.end_city == "small") or (self.start_city == "small" and self.end_city == "big")):

41

Team 2017019 Page 42

return 2

elif(self.start_city == "med" and self.end_city == "med"):

return 2

elif((self.start_city == "med" and self.end_city == "small") or (self.start_city == "small" and self.end_city == "med")):

return 3

elif(self.start_city == "small" and self.end_city == "small"):

return 3

def totalTravelTime(meetingList):

distances = totalDistanceList(meetingList)

i=0

total_times = []

for distance in distances:

total_layover_time = 0

for j in range(0,len(meetingList)):

start_city_size = ’big’

my_layovers = Layovers(start_city_size,end_city_sizes[i])

total_layover_time = (my_layovers.get_layovers() - 1) * 5.52 + total_layover_time

my_trip = TravelTime(distance,1)

total_time = my_trip.travel_time + total_layover_time

total_times.append(total_time)

i = i+1

total_times2 = (np.array(total_times))

return total_times2

16.5.4 Work Productivity Algorithm

Using MATLAB, we created horizontal matrices with monthly average temperatures and precipitation levels for
each of the ten climates. Then we augmented these climate matrices in the order of the 75 zones’ climates. We
defined a variable for the month when the meeting is held, and then ran a for loop to evaluate the average differ-
ence between each zone’s temperature and precipitation and those of the various zones where the participants
hail from. We also took the absolute difference between each zones’ temperature and 22 degrees Celsius.

Similarly, we created a matrix for the average time zone of each region (Using the International Date Line
as 1). Then, we set up a for loop that evaluated the difference in time zones between each region and the zone
where the participants are from. For values above 12 or below 12, we subtracted or added 24 to find the number
of time zones crossed traveling the opposite (and shorter) way. Positive values indicated eastward travel and
were multiplied by the sleep-lost-from-eastward-travel ratio (1). Negative values were absolute-valued and then
multiplied by the sleep-lost-from-westward-travel ratio (1

2). The sum of these for all 6 or 11 or more participants’
zones is that zones TimeScore, which are all augmented into a matrix.

Total flight hours are taken from the previous program and stored in a matrix which is multiplied by the
sleep-lost-due-to-flying ratio (1

2).
Work percent loss for each zone was then determined as the sum of temperature difference times its ratio

(1
10), precipitation difference in mm times a ratio (1

100), how close its temperature was to 22 degrees Celsius
times a ratio (11

100), and how much sleep lost multiplied by its ratio (3
4). Then the program spit out a matrix

that had all 75 zones and their respective Work Percent Loss values.
Code for determining optimal productive (set for the big meeting):

clc;clear;clf;

TWT = [27 27 27 27 26 26 25 27 27 27 27 27] %TropWetTemp

TWP = [250 280 260 320 300 200 170 160 190 200 240 220]

TDNT = [21 20 21 22 23 24 26 27 27 27 26 25] %TropWetDryNorthTemp

TDNP = [10 10 10 30 100 200 300 550 470 200 105 15]

TDST = [23 23 23 23 23 20 20 23 25 24 23 23] %TropWetDrySouthTemp

MT = [7 8 10 13 17 21 24 24 21 16 11 8] %Mediteranean Temp

MP = [104 99 69 66 38 23 13 23 59 84 120 112]

42

Team 2017019 Page 43

HSNT = [7 8 11 17 21 26 28 27 24 17 11 7] %HumiSubNorthTemp

HSNP = [150 120 130 120 100 90 80 70 60 70 100 120]

HSST = [28 27 24 17 11 7 7 8 11 17 21 26]

TDSP = [225 220 230 110 10 0 0 5 25 90 185 230]

HSSP = [70 60 70 70 100 120 150 120 130 120 100 80]

MNT = [2 4 6 8 12 13 17 16 14 10 6 4] %MariWestCoasNorthTemp

MNP = [140 120 100 60 40 50 20 30 60 120 140 150]

MST = [17 16 14 10 6 4 2 4 6 8 12 13]

MSP = [20 30 60 120 140 150 140 120 100 60 40 50]

HCT = [-7 -5 3 10 15 20 23 22 18 12 5 -3] %HumiContTemp

HCP = [50 40 70 90 90 100 90 90 70 60 60 50]

ST = [-43 -39 -25 -5 5 12 15 11 5 -7 -30 -40] %SubarcticTemp

SP = [15 10 10 15 25 30 40 35 20 15 15 10]

ANT = [13 14 17 20 23 26 27 27 25 23 21 15] %Arid North Temp

ANP = [3 2 1 1 0 0 0 0 0 0 2 3]

AST = [27 27 25 23 21 15 13 14 17 20 23 26]

ASP = [0 0 0 0 2 3 3 2 1 1 0 0]

WSNT = [14 17 20 24 26 27 28 28 25 22 18 16] %WarmSemiNorthTemp

WSNP = [19 18 19 32 55 71 50 85 145 69 22 15]

CSNT = [-7 -3 1 5 10 15 19 18 13 7 0 -5] %Cold Semi North Temp

CSNP = [15 10 18 22 44 46 31 30 29 15 14 15]

WSST = [28 28 25 22 18 16 14 17 20 24 26 27] %WarmSemiNorthTemp

WSSP = [50 85 145 69 22 15 19 18 19 32 55 71]

CSST = [19 18 13 7 0 -5 -7 -3 1 5 10 15] %ColdSemiNorthTemp

CSSP = [31 30 29 15 14 15 15 10 18 22 44 46]

Temp = [ST; ST; ST; ST; ST; ST; MNT; ST; CSNT; WSNT; TDNT; HCT; HSNT; TWT; HCT; MNT; TWT; TWT; WSST; CSST; TWT; TDST; HSST; ST; MNT; MNT; ANT; TDNT; MNT; MNT ;ANT; ANT; TDNT; TDST; WSST ;HCT; WSNT; ANT; ANT; TDNT; TDST; WSST; ST ;HCT; WSNT; AST; TDST; WSST; CSNT; WSNT; TWT; HCT; ST ;HSNT; TWT; CSNT; CSNT; HSNT; TDNT; TWT ;WSST; HCT; HSNT; TWT; TWT ;WSST; AST; ST; TWT; WSST; WSST; MST; ST; MST; MST]

Temp(44,:)

Prec = [SP; SP; SP; SP; SP; SP; MNP; SP; CSNP; WSNP; TDNP; HCP; HSNP; TWP; HCP; MNP;

TWP; TWP; WSSP; CSSP; TWP; TDSP; HSSP; SP; MNP; MNP; ANP; TDNP; MNP; MNP ;ANP; ANP; TDNP; TDSP; WSSP ;HCP; WSNP; ANP; ANP; TDNP; TDSP; WSSP; SP ;HCP; WSNP; ASP; TDSP; WSSP; CSNP; WSNP; TWP; HCP; SP ;HSNP; TWP; CSNP; CSNP; HSNP; TDNP; TWP ;WSSP; HCP; HSNP; TWP; TWP ;WSSP; ASP; SP; TWP; WSSP; WSSP; MSP; SP; MSP; MSP]

Prec(30,:)

month = 1;

for i = 1:1:75

TempDiff(i) = 2*abs(Temp(i,month) - MNT(month))+abs(Temp(i,month) - WSST(month))+2*abs(Temp(i,month) - HSNT(month))+4*abs(Temp(i,month) - HCT(month)) + abs(Temp(i,month) - TDNT(month)) + abs(Temp(i,month) - WSNT(month));

PrecDiff(i) = 2*abs(Prec(i,month) - MNP(month))+abs(Prec(i,month) - WSSP(month))+2*abs(Prec(i,month) - HSNP(month))+4*abs(Prec(i,month) - HCP(month)) + abs(Prec(i,month) - TDNP(month)) + abs(Prec(i,month) - WSNP(month));

CloseTo22(i) = Temp(i,month)-22;

end

AverageTempDiff = TempDiff/11

AveragePrecDiff = PrecDiff/11

Time = [2 19 2 14 3 3 3 4 4 3 5 5 6 5 6 6 4 5 6 7 6 7 7 10 11 11 11 9 12 12 11 11 11 11 12 13 12 13 12 12 12 13 12 15 14 13 13 13 16 15.5 15.5 17 18 16.5 15.5 18 18 18 18 17 18 20 19 18 19 19.5 19.5 19 20 20 20 20 24 24 24]

for i = 1:1:75

43

Team 2017019 Page 44

N = Time(i) - Time(15);

if (N >= 12)

N = abs(N-24)/2;

elseif (N < -12)

N = N+24;

elseif(N < 0)

N = abs(N)/2;

end

N1 = Time(i) - Time(59);

if (N1 >= 12)

N1 = abs(N1-24)/2;

elseif (N1 < -12)

N1 = N1+24;

elseif(N1 < 0)

N1 = abs(N1)/2;

end

N2 = Time(i) - Time(57);

if (N2 >= 12)

N2 = abs(N2-24)/2;

elseif (N2 < -12)

N2 = N2+24;

elseif(N2 < 0)

N2 = abs(N2)/2;

end

N3 = Time(i) - Time(58);

if (N3 >= 12)

N3 = (N3-24)/2;

elseif (N3 < -12)

N3 = N3+24;

elseif(N3 < 0)

N3 = abs(N3)/2;

end

N4 = Time(i) - Time(37);

if (N4 >= 12)

N4 = abs(N4-24)/2;

elseif (N4 < -12)

N4 = N4+24;

elseif(N4 < 0)

N4 = abs(N4)/2;

end

N6 = Time(i) - Time(71);

if (N6 >= 12)

N6 = abs(N6-24)/2;

elseif (N6 < -12)

N6 = N6+24;

elseif(N6 < 0)

N6 = abs(N6)/2;

end

N5 = Time(i) - Time(30);

if (N5 >= 12)

N5 = abs(N5-24)/2;

elseif (N5 < -12)

N5 = N5+24;

44

Team 2017019 Page 45

elseif(N5 < 0)

N5 = abs(N5)/2;

end

Timescore(i) = 2*N+N1+N2+2*N3+2*N4+2*N5+N6;

end

TotalFlightHours= [87.03053512, 77.21702092, 89.3114396 , 71.33513886, 90.57668054, 104.37014666, 119.78521709, 90.70880217, 104.73475096, 121.2579614 , 138.4544529 , 102.76646222, 120.19873365, 139.71583571, 99.31715915, 117.10616237, 138.06904057, 156.62617024, 168.47776367, 171.23772276, 132.05585338, 149.02745538, 161.32409503, 77.81167167, 84.11015706, 94.87559936, 102.58574605, 114.09728647, 74.10780611, 75.49334439, 90.0760962 , 101.51751489, 109.06721186, 120.14344491, 134.14203456, 71.74351602, 71.52407971, 80.57818162, 87.54523284, 94.78391646, 102.17838534, 113.40397055, 128.26683542, 70.82512582, 80.4619578 , 93.68671126, 108.71154509, 124.50904441, 70.9751981 , 78.15620601, 90.30416138, 71.38181956, 74.46918398, 78.5655793 , 87.67226758, 73.05653874, 74.48253733, 77.45212227, 87.66809126, 106.22522092, 127.18809912, 77.94331413, 82.97016646, 95.26680612, 107.77970827, 116.77245008, 130.45445015, 84.87919737, 116.74948219, 124.63184075, 136.35741481, 152.1633594 , 91.72594447, 145.57006125, 160.18410443];

AverageFlightHours = TotalFlightHours/11;

AveSleepLoss = Timescore/11 + AverageFlightHours/2;

WorkPercentLoss = AverageTempDiff/10 + AveragePrecDiff/100 + abs(CloseTo22)*11/100 + AveSleepLoss*6/8

16.5.5 Sensitivity Analysis

To test the weight of the different variables, we treated the individual constants as variables in order to see
how a small change would skew the location decision. First the program would define a constant as a matrix
of 3 to 5 values. It would find the Work Percent Losses as a matrix of values for all 75 zones over the different
constants. Then it plotted a surface plot of the 75 zones which showed how their scores fluctuated as the constant
changed. This was completed for every constant. Once the locations resulting in minimum Work Percent Loss
were determined, it plotted those as overlaying line plots for ease of viewing.

Code for analyzing the sensitivity of the difference in degrees Celsius constant for the big meeting:

clc;clear;clf;

t = linspace(1,75,75);

r = 0.5; %sleeploss due to flying standard is 2 hours flying, 1 hour sleeploss i.e. 1/2

k = 2; %;sleeploss due to time change west standard is 2

h = 1; %sleeploss due to time change east standard is 1

w = [0,1/10,3/5]; %workloss due to temp

p = 1/100; %workloss due to prec

c = 11/100; %workloss due to diff from 22 degrees

TWT = [27 27 27 27 26 26 25 27 27 27 27 27]; %TropWetTemp

TWP = [250 280 260 320 300 200 170 160 190 200 240 220];

TDNT = [21 20 21 22 23 24 26 27 27 27 26 25]; %TropWetDryNorthTemp

TDNP = [10 10 10 30 100 200 300 550 470 200 105 15];

TDST = [23 23 23 23 23 20 20 23 25 24 23 23]; %TropWetDrySouthTemp

MT = [7 8 10 13 17 21 24 24 21 16 11 8]; %Mediteranean Temp

MP = [104 99 69 66 38 23 13 23 59 84 120 112];

HSNT = [7 8 11 17 21 26 28 27 24 17 11 7]; %HumiSubNorthTemp

HSNP = [150 120 130 120 100 90 80 70 60 70 100 120];

HSST = [28 27 24 17 11 7 7 8 11 17 21 26];

TDSP = [225 220 230 110 10 0 0 5 25 90 185 230];

HSSP = [70 60 70 70 100 120 150 120 130 120 100 80];

MNT = [2 4 6 8 12 13 17 16 14 10 6 4]; %MariWestCoasNorthTemp

MNP = [140 120 100 60 40 50 20 30 60 120 140 150];

MST = [17 16 14 10 6 4 2 4 6 8 12 13];

MSP = [20 30 60 120 140 150 140 120 100 60 40 50];

HCT = [-7 -5 3 10 15 20 23 22 18 12 5 -3]; %HumiContTemp

HCP = [50 40 70 90 90 100 90 90 70 60 60 50];

ST = [-43 -39 -25 -5 5 12 15 11 5 -7 -30 -40]; %SubarcticTemp

SP = [15 10 10 15 25 30 40 35 20 15 15 10];

45

Team 2017019 Page 46

ANT = [13 14 17 20 23 26 27 27 25 23 21 15]; %Arid North Temp

ANP = [3 2 1 1 0 0 0 0 0 0 2 3];

AST = [27 27 25 23 21 15 13 14 17 20 23 26];

ASP = [0 0 0 0 2 3 3 2 1 1 0 0];

WSNT = [14 17 20 24 26 27 28 28 25 22 18 16]; %WarmSemiNorthTemp

WSNP = [19 18 19 32 55 71 50 85 145 69 22 15];

CSNT = [-7 -3 1 5 10 15 19 18 13 7 0 -5]; %Cold Semi North Temp

CSNP = [15 10 18 22 44 46 31 30 29 15 14 15];

WSST = [28 28 25 22 18 16 14 17 20 24 26 27]; %WarmSemiNorthTemp

WSSP = [50 85 145 69 22 15 19 18 19 32 55 71];

CSST = [19 18 13 7 0 -5 -7 -3 1 5 10 15] ;%ColdSemiNorthTemp

CSSP = [31 30 29 15 14 15 15 10 18 22 44 46];

Temp = [ST; ST; ST; ST; ST; ST; MNT; ST; CSNT; WSNT; TDNT; HCT; HSNT; TWT; HCT; MNT; TWT; TWT; WSST; CSST; TWT; TDST; HSST; ST; MNT; MNT; ANT; TDNT; MNT; MNT ;ANT; ANT; TDNT; TDST; WSST ;HCT; WSNT; ANT; ANT; TDNT; TDST; WSST; ST ;HCT; WSNT; AST; TDST; WSST; CSNT; WSNT; TWT; HCT; ST ;HSNT; TWT; CSNT; CSNT; HSNT; TDNT; TWT ;WSST; HCT; HSNT; TWT; TWT ;WSST; AST; ST; TWT; WSST; WSST; MST; ST; MST; MST];

Temp(44,:);

Prec = [SP; SP; SP; SP; SP; SP; MNP; SP; CSNP; WSNP; TDNP; HCP; HSNP; TWP; HCP; MNP; TWP; TWP; WSSP; CSSP; TWP; TDSP; HSSP; SP; MNP; MNP; ANP; TDNP; MNP; MNP ;ANP; ANP; TDNP; TDSP; WSSP ;HCP; WSNP; ANP; ANP; TDNP; TDSP; WSSP; SP ;HCP; WSNP; ASP; TDSP; WSSP; CSNP; WSNP; TWP; HCP; SP ;HSNP; TWP; CSNP; CSNP; HSNP; TDNP; TWP ;WSSP; HCP; HSNP; TWP; TWP ;WSSP; ASP; SP; TWP; WSSP; WSSP; MSP; SP; MSP; MSP];

month = 1;

for i = 1:1:75

TempDiff(i) = 2*abs(Temp(i,month) - MNT(month))+abs(Temp(i,month) - WSST(month))+2*abs(Temp(i,month) - HSNT(month))+4*abs(Temp(i,month) - HCT(month)) + abs(Temp(i,month) - TDNT(month)) + abs(Temp(i,month) - WSNT(month));

PrecDiff(i) = 2*abs(Prec(i,month) - MNP(month))+abs(Prec(i,month) - WSSP(month))+2*abs(Prec(i,month) - HSNP(month))+4*abs(Prec(i,month) - HCP(month)) + abs(Prec(i,month) - TDNP(month)) + abs(Prec(i,month) - WSNP(month));

CloseTo22(i) = Temp(i,month)-22;

end

for i=1:1:size(w,2)

AverageTempDiff(i,:) = TempDiff/11*w(i);

AveragePrecDiff(i,:) = PrecDiff/11*p;

CloseTo22Matrix(i,:) = c*abs(CloseTo22);

end

Time = [2 19 2 14 3 3 3 4 4 3 5 5 6 5 6 6 4 5 6 7 6 7 7 10 11 11 11 9 12 12 11 11 11 11 12 13 12 13 12 12 12 13 12 15 14 13 13 13 16 15.5 15.5 17 18 16.5 15.5 18 18 18 18 17 18 20 19 18 19 19.5 19.5 19 20 20 20 20 24 24 24]

for i = 1:1:75

N = Time(i) - Time(15);

if (N >= 12)

N = abs(N-24)/k;

elseif (N < -12)

N = N+24;

elseif(N < 0)

N = abs(N)/k;

end

N1 = Time(i) - Time(59);

if (N1 >= 12)

N1 = abs(N1-24)/k;

elseif (N1 < -12)

N1 = N1+24;

elseif(N1 < 0)

N1 = abs(N1)/k;

end

N2 = Time(i) - Time(57);

46

Team 2017019 Page 47

if (N2 >= 12)

N2 = abs(N2-24)/k;

elseif (N2 < -12)

N2 = N2+24;

elseif(N2 < 0)

N2 = abs(N2)/k;

end

N3 = Time(i) - Time(58);

if (N3 >= 12)

N3 = (N3-24)/k;

elseif (N3 < -12)

N3 = N3+24;

elseif(N3 < 0)

N3 = abs(N3)/k;

end

N4 = Time(i) - Time(37)

if (N4 >= 12)

N4 = abs(N4-24)/k;

elseif (N4 < -12)

N4 = N4+24;

elseif(N4 < 0)

N4 = abs(N4)/k;

end

N6 = Time(i) - Time(71);

if (N6 >= 12)

N6 = abs(N6-24)/k;

elseif (N6 < -12)

N6 = N6+24;

elseif(N6 < 0)

N6 = abs(N6)/k;

end

N5 = Time(i) - Time(30);

if (N5 >= 12)

N5 = abs(N5-24)/k;

elseif (N5 < -12)

N5 = N5+24;

elseif(N5 < 0)

N5 = abs(N5)/k;

end

Timescore(i) = 2*N+N1+N2+2*N3+2*N4+2*N5+N6;

end

TotalFlightHours= [87.03053512, 77.21702092, 89.3114396 , 71.33513886, 90.57668054, 104.37014666, 119.78521709, 90.70880217, 104.73475096, 121.2579614 , 138.4544529 , 102.76646222, 120.19873365, 139.71583571, 99.31715915, 117.10616237, 138.06904057, 156.62617024, 168.47776367, 171.23772276, 132.05585338, 149.02745538, 161.32409503, 77.81167167, 84.11015706, 94.87559936, 102.58574605, 114.09728647, 74.10780611, 75.49334439, 90.0760962 , 101.51751489, 109.06721186, 120.14344491, 134.14203456, 71.74351602, 71.52407971, 80.57818162, 87.54523284, 94.78391646, 102.17838534, 113.40397055, 128.26683542, 70.82512582, 80.4619578 , 93.68671126, 108.71154509, 124.50904441, 70.9751981 , 78.15620601, 90.30416138, 71.38181956, 74.46918398, 78.5655793 , 87.67226758, 73.05653874, 74.48253733, 77.45212227, 87.66809126, 106.22522092, 127.18809912, 77.94331413, 82.97016646, 95.26680612, 107.77970827, 116.77245008, 130.45445015, 84.87919737, 116.74948219, 124.63184075, 136.35741481, 152.1633594 , 91.72594447, 145.57006125, 160.18410443]

AverageFlightHours = TotalFlightHours/11;

for i = 1:1:size(w,2)

AveSleepLoss(i,:) = Timescore/11 + AverageFlightHours*r;

end

WorkPercentLoss = AverageTempDiff + AveragePrecDiff + CloseTo22Matrix + AveSleepLoss*6/8

clf;

47

Team 2017019 Page 48

figure(1)

surf(t,w,WorkPercentLoss)

hold on

plot3(59,0,6.1660,’*g’)

plot3(37,1/10,7.4756,’*r’)

plot3(29,3/5,13.1819,’*y’)

xlabel(’Location by Zone Number’)

ylabel(’Percent of Work Loss per Degree Celsius Difference from 22’)

zlabel(’Total Percent of Work Loss (including other factors)’)

title(’How Changing the Constant for Temperature Affects Location Choice’)

figure(2)

AverageTempDiff(:,29)

AverageTempDiff(:,37)

plot(w,WorkPercentLoss(:,37),’r--’)

hold on

plot(w,WorkPercentLoss(:,59),’b’)

plot(w,WorkPercentLoss(:,29),’g’)

legend(’Istanbul’,’Singapore’,’Stockholm’)

xlabel(’Percent of Work Loss per Degree Celsius Difference from Hometown’)

ylabel(’Total Percent of Work Loss (including other factors)’)

title(’How Changing the Constant for Temperature Affects Location Choice’)

16.5.6 Equality Algorithm

Essentially, this algorithm took the standard deviations for each factor and then weighted them using the original
formula. First it created a matrix of the differences in temperature and precipitation with each participant as
a column and each destination zone as a row. Then it simply took the standard deviation. Similar procedures
were used to evaluate the sleep lost from time zones and flight times. Finally, it determined an Equaling Score
for each zone by adding up the standard deviations from each factor using the previously mentioned weighting
algorithm.

To determine how favoring equality impacts location decision, we summed the Equaling Score and the
previously determined Work Percent Loss using a variable as the weight constant for Equaling score (from 0 to
1). Then we plotted how the 75 zones’ total scores changed as the weighting constant increased and determined
the optimal location for various weights.

Code used to find the standard deviations of each factor for each zone for the small meeting:

clc;clear;clf;

TWT = [27 27 27 27 26 26 25 27 27 27 27 27] %TropWetTemp

TWP = [250 280 260 320 300 200 170 160 190 200 240 220]

TDNT = [21 20 21 22 23 24 26 27 27 27 26 25] %TropWetDryNorthTemp

TDNP = [10 10 10 30 100 200 300 550 470 200 105 15]

TDST = [23 23 23 23 23 20 20 23 25 24 23 23] %TropWetDrySouthTemp

MT = [7 8 10 13 17 21 24 24 21 16 11 8] %Mediteranean Temp

MP = [104 99 69 66 38 23 13 23 59 84 120 112]

HSNT = [7 8 11 17 21 26 28 27 24 17 11 7] %HumiSubNorthTemp

HSNP = [150 120 130 120 100 90 80 70 60 70 100 120]

HSST = [28 27 24 17 11 7 7 8 11 17 21 26]

TDSP = [225 220 230 110 10 0 0 5 25 90 185 230]

HSSP = [70 60 70 70 100 120 150 120 130 120 100 80]

MNT = [2 4 6 8 12 13 17 16 14 10 6 4] %MariWestCoasNorthTemp

MNP = [140 120 100 60 40 50 20 30 60 120 140 150]

MST = [17 16 14 10 6 4 2 4 6 8 12 13]

MSP = [20 30 60 120 140 150 140 120 100 60 40 50]

48

Team 2017019 Page 49

HCT = [-7 -5 3 10 15 20 23 22 18 12 5 -3] %HumiContTemp

HCP = [50 40 70 90 90 100 90 90 70 60 60 50]

ST = [-43 -39 -25 -5 5 12 15 11 5 -7 -30 -40] %SubarcticTemp

SP = [15 10 10 15 25 30 40 35 20 15 15 10]

ANT = [13 14 17 20 23 26 27 27 25 23 21 15] %Arid North Temp

ANP = [3 2 1 1 0 0 0 0 0 0 2 3]

AST = [27 27 25 23 21 15 13 14 17 20 23 26]

ASP = [0 0 0 0 2 3 3 2 1 1 0 0]

WSNT = [14 17 20 24 26 27 28 28 25 22 18 16] %WarmSemiNorthTemp

WSNP = [19 18 19 32 55 71 50 85 145 69 22 15]

CSNT = [-7 -3 1 5 10 15 19 18 13 7 0 -5] %Cold Semi North Temp

CSNP = [15 10 18 22 44 46 31 30 29 15 14 15]

WSST = [28 28 25 22 18 16 14 17 20 24 26 27] %WarmSemiNorthTemp

WSSP = [50 85 145 69 22 15 19 18 19 32 55 71]

CSST = [19 18 13 7 0 -5 -7 -3 1 5 10 15] %ColdSemiNorthTemp

CSSP = [31 30 29 15 14 15 15 10 18 22 44 46]

Temp = [ST; ST; ST; ST; ST; ST; MNT; ST; CSNT; WSNT; TDNT; HCT; HSNT; TWT; HCT; MNT; TWT; TWT; WSST; CSST; TWT; TDST; HSST; ST; MNT; MNT; ANT; TDNT; MNT; MNT ;ANT; ANT; TDNT; TDST; WSST ;HCT; WSNT; ANT; ANT; TDNT; TDST; WSST; ST ;HCT; WSNT; AST; TDST; WSST; CSNT; WSNT; TWT; HCT; ST ;HSNT; TWT; CSNT; CSNT; HSNT; TDNT; TWT ;WSST; HCT; HSNT; TWT; TWT ;WSST; AST; ST; TWT; WSST; WSST; MST; ST; MST; MST]

Prec = [SP; SP; SP; SP; SP; SP; MNP; SP; CSNP; WSNP; TDNP; HCP; HSNP; TWP; HCP; MNP; TWP; TWP; WSSP; CSSP; TWP; TDSP; HSSP; SP; MNP; MNP; ANP; TDNP; MNP; MNP ;ANP; ANP; TDNP; TDSP; WSSP ;HCP; WSNP; ANP; ANP; TDNP; TDSP; WSSP; SP ;HCP; WSNP; ASP; TDSP; WSSP; CSNP; WSNP; TWP; HCP; SP ;HSNP; TWP; CSNP; CSNP; HSNP; TDNP; TWP ;WSSP; HCP; HSNP; TWP; TWP ;WSSP; ASP; SP; TWP; WSSP; WSSP; MSP; SP; MSP; MSP]

month = 6;

for i = 1:1:75

TempDiff(i) = 2*abs(Temp(i,month) - MNT(month))+abs(Temp(i,month) - WSST(month))+2*abs(Temp(i,month) - HSNT(month))+abs(Temp(i,month) - HCT(month));

PrecDiff(i) = 2*abs(Prec(i,month) - MNP(month))+abs(Prec(i,month) - WSSP(month))+2*abs(Prec(i,month) - HSNP(month))+abs(Prec(i,month) - HCP(month));

CloseTo22(i) = Temp(i,month)-22;

end

AverageTempDiff = TempDiff/6

AveragePrecDiff = PrecDiff/6

CloseTo22(30)

Time = [2 19 2 14 3 3 3 4 4 3 5 5 6 5 6 6 4 5 6 7 6 7 7 10 11 11 11 9 12 12 11 11 11 11 12 13 12 13 12 12 12 13 12 15 14 13 13 13 16 15.5 15.5 17 18 16.5 15.5 18 18 18 18 17 18 20 19 18 19 19.5 19.5 19 20 20 20 20 24 24 24];

for i = 1:1:75

N = Time(i) - Time(7);

if (N >= 12)

N = abs(N-24)/2;

elseif (N < -12)

N = N+24;

elseif(N < 0)

N = abs(N)/2;

end

N1 = Time(i) - Time(30);

if (N1 >= 12)

N1 = abs(N1-24)/2;

elseif (N1 < -12)

N1 = N1+24;

elseif(N1 < 0)

N1 = abs(N1)/2;

end

49

Team 2017019 Page 50

N2 = Time(i) - Time(71);

if (N2 >= 12)

N2 = abs(N2-24)/2;

elseif (N2 < -12)

N2 = N2+24;

elseif(N2 < 0)

N2 = abs(N2)/2;

end

N3 = Time(i) - Time(63);

if (N3 >= 12)

N3 = (N3-24)/2;

elseif (N3 < -12)

N3 = N3+24;

elseif(N3 < 0)

N3 = abs(N3)/2;

end

N4 = Time(i) - Time(58)

if (N4 >= 12)

N4 = abs(N4-24)/2;

elseif (N4 < -12)

N4 = N4+24;

elseif(N4 < 0)

N4 = abs(N4)/2

end

N5 = Time(i) - Time(37);

if (N5 >= 12)

N5 = abs(N5-24)/2;

elseif (N5 < -12)

N5 = N5+24;

elseif(N5 < 0)

N5 = abs(N5)/2;

end

Timescore(i) = N+N1+N2+N3+N4+N5;

Timescore1(i,:) = [N,N1,N2,N3,N4,N5];

end

TotalFlightHours = [47.23842518, 43.019245, 48.89179119, 43.0731149, 50.46907321, 54.30926941, 59.77897269, 51.89321549, 57.10577741, 63.64140784, 72.15041865, 59.97856283, 67.84655912, 76.33811194, 61.8443093, 70.56118508, 79.15480242, 87.6558579, 93.57950817, 93.16841816, 79.31445012, 87.00254077, 92.62490923, 49.94102805, 55.84565861, 62.25917898, 66.29605404, 71.87461338, 47.61395491, 50.64237751, 58.89376445, 64.81091312, 68.53309835, 73.73102024, 79.67093028, 45.52982956, 47.16592452, 52.37407423, 56.15587595, 59.97966455, 63.79016917, 69.38659884, 76.2257638 , 44.69658024, 50.36299337, 57.49596881, 65.3600734 , 73.47244267, 42.92202054, 46.79413246, 53.19086878, 41.1669164 , 42.30132398, 44.26022282, 48.92071267, 40.0829972 , 39.41860045, 40.32645961, 45.59555746, 54.09661294, 62.69023028, 40.81743629, 40.62650613, 46.24887459, 51.97624118, 55.90235018, 61.8495697 , 43.30493702, 54.9326683 , 58.43959182, 63.75862436, 72.8909274 , 46.36978244, 68.93590606, 77.40575675]

AveSleepLoss = Timescore/6+TotalFlightHours/2/6;

WorkPercentLoss = AverageTempDiff/10 + AveragePrecDiff/100 + abs(CloseTo22)*11/100 + AveSleepLoss*6/8;

AverageTempDiff(52);

AveragePrecDiff(52);

CloseTo22(52);

AveSleepLoss(52);

for i = 1:1:75

TempDiff1(i,:) = [abs(Temp(i,month) - MNT(month)), abs(Temp(i,month) - MNT(month)), abs(Temp(i,month) - WSST(month)),abs(Temp(i,month) - HSNT(month)),abs(Temp(i,month) - HSNT(month)),abs(Temp(i,month) - HCT(month))];

PrecDiff1(i,:) = [abs(Prec(i,month) - MNP(month)),abs(Prec(i,month) - MNP(month)) , abs(Prec(i,month) - WSSP(month)),abs(Prec(i,month) - HSNP(month)),abs(Prec(i,month) - HSNP(month)),abs(Prec(i,month) - HCP(month))];

CloseTo221(i) = Temp(i,month)-22;

end

STDTempDiff = std(TempDiff1’)

50

Team 2017019 Page 51

STDPrecDiff = std(PrecDiff1’)

CloseTo22(30);

STDTimescore = std(Timescore1’)

STDFlightTimes = [1577.75292566, 1638.88284174, 1739.37722205, 2234.94880754, 1944.25764348, 2080.05737765, 2235.15792429, 2153.17911479, 2351.69047882, 2454.06763475, 2206.42186282, 2522.26829557, 2500.97308778, 2329.73646129, 2757.55760939, 2679.74874505, 2476.09725822, 2417.28639391, 2323.25122614, 1846.24246522, 2563.74673744, 2326.39655262, 2165.3313666 , 2870.90682607, 3307.14111096, 3140.52657134, 2879.06592479, 2411.04225013, 2832.87470873, 3260.73797577, 2830.46356569, 2400.26862314, 2109.25619754, 1713.29277506, 1355.8576053 , 2701.96633623, 2971.71954056, 2686.20650908, 2455.08104202, 2229.04579877, 2028.76553647, 1813.50986302, 1704.50845047, 2596.9147508 , 2290.49699483, 2055.80378374, 2036.6629712 , 2235.15792429, 2207.73494345, 2088.70802697, 2067.29734025, 1969.39448724, 2060.03220751, 2130.58327122, 2203.83446329, 1846.24246522, 2201.00896489, 2422.03283067, 2417.28639391, 2476.09725822, 2679.74874505, 1661.11200462, 2165.3313666 , 2326.39655262, 2483.58102327, 2655.6221635 , 2959.10930232, 1375.00399756, 2401.6589637 , 2685.09364245, 3147.64199653, 3271.87373296, 1195.67482588, 3019.08427344, 3307.14111096]/560

EqualingScore = STDTempDiff/10 + STDPrecDiff/100 + abs(CloseTo22)*11/100 + STDTimescore*6/8+STDFlightTimes*6/8

WorkPercentLoss

clf

figure(1)

t = linspace(1,75,75);

k = [0,1/10,100];

size(k,2)

for i = 1:1:size(k,2)

TotalScore(i,:) = EqualingScore*k(i)+WorkPercentLoss

end

surf(t,k,TotalScore)

axis([1,72,0,1,0,40])

xlabel(’Location Number’)

ylabel(’How much do we care about equalizing the meeting (STD sum)’)

zlabel(’Score of Location (Lower is better)’)

title(’How the Location changes depending upon the weight of Equalization’)

figure(2)

plot(k,TotalScore(:,52),’r--’)

hold on

plot(k,TotalScore(:,62),’b’)

plot(k,TotalScore(:,68),’g’)

plot(k,TotalScore(:,50),’c’)

legend(’Novosibirsk’,’Vladivostock’, ’Sapporo’)

xlabel(’How much do we care about equalizing the meeting (STD sum)’)

ylabel(’Score of Location (Lower is better)’)

title(’How the Location changes depending upon the weight of Equalization’)

16.5.7 Determining Cost for Each Zone

Using Python, we created a function that would plug the number of layovers and the distance between two
cities into the equation:

Cost = StartingCost ∗ Flights+ Costpermile ∗ (miles ∗ inefficiency) (1)

With inefficiency as 1.1, cost per mile as 0.168, and starting cost as 50. The list of flight costs was then added
to a list containing the hotel costs of staying in each location, creating a list with the total cost of choosing
each location. Also included in the cost calculations for each zone were average hotel prices in the major cities
of each zone. The average hotel prices for each zone, found using Source 16, can be referenced in Table 16.3.2.

def totalCost(meetingList):

distances = totalDistanceList(meetingList)

i = 0

total_flight_costs = []

for distance in distances:

for i in range(0,len(meetingList)):

start_city_size = ’big’

my_layovers = Layovers(start_city_size,end_city_sizes[i])

flight_start_cost= 50*(my_layovers.get_layovers()+1)

total_flight_costs.append(flight_start_cost +(.168*distance*1.1))

51

Team 2017019 Page 52

i = i + 1

total_costs = []

i=0

for cost in hotelCosts:

total_costs.append(cost * 3 * (len(meetingList)) + 2*total_flight_costs[i])

i = i + 1

totalCosts = np.array(total_costs)

return totalCosts

16.5.8 Balancing Productivity, Equality, and Cost

Using a very similar method to the Equality Balancing code, we took the costs and multiplied them by a
second weighting constant and added that to the previous sum of the Equaling Score times a variable and Work
Productivity. Using surface plots, the program graphed the scores for all 75 zones as the two weighting constants
increased.

Code for evaluating Productivity, Equality, and Cost simultaneously for the big meeting:

clc;clear all;clf;

TWT = [27 27 27 27 26 26 25 27 27 27 27 27] %TropWetTemp

TWP = [250 280 260 320 300 200 170 160 190 200 240 220]

TDNT = [21 20 21 22 23 24 26 27 27 27 26 25] %TropWetDryNorthTemp

TDNP = [10 10 10 30 100 200 300 550 470 200 105 15]

TDST = [23 23 23 23 23 20 20 23 25 24 23 23] %TropWetDrySouthTemp

MT = [7 8 10 13 17 21 24 24 21 16 11 8] %Mediteranean Temp

MP = [104 99 69 66 38 23 13 23 59 84 120 112]

HSNT = [7 8 11 17 21 26 28 27 24 17 11 7] %HumiSubNorthTemp

HSNP = [150 120 130 120 100 90 80 70 60 70 100 120]

HSST = [28 27 24 17 11 7 7 8 11 17 21 26]

TDSP = [225 220 230 110 10 0 0 5 25 90 185 230]

HSSP = [70 60 70 70 100 120 150 120 130 120 100 80]

MNT = [2 4 6 8 12 13 17 16 14 10 6 4] %MariWestCoasNorthTemp

MNP = [140 120 100 60 40 50 20 30 60 120 140 150]

MST = [17 16 14 10 6 4 2 4 6 8 12 13]

MSP = [20 30 60 120 140 150 140 120 100 60 40 50]

HCT = [-7 -5 3 10 15 20 23 22 18 12 5 -3] %HumiContTemp

HCP = [50 40 70 90 90 100 90 90 70 60 60 50]

ST = [-43 -39 -25 -5 5 12 15 11 5 -7 -30 -40] %SubarcticTemp

SP = [15 10 10 15 25 30 40 35 20 15 15 10]

ANT = [13 14 17 20 23 26 27 27 25 23 21 15] %Arid North Temp

ANP = [3 2 1 1 0 0 0 0 0 0 2 3]

AST = [27 27 25 23 21 15 13 14 17 20 23 26]

ASP = [0 0 0 0 2 3 3 2 1 1 0 0]

WSNT = [14 17 20 24 26 27 28 28 25 22 18 16] %WarmSemiNorthTemp

WSNP = [19 18 19 32 55 71 50 85 145 69 22 15]

CSNT = [-7 -3 1 5 10 15 19 18 13 7 0 -5] %Cold Semi North Temp

CSNP = [15 10 18 22 44 46 31 30 29 15 14 15]

WSST = [28 28 25 22 18 16 14 17 20 24 26 27] %WarmSemiNorthTemp

WSSP = [50 85 145 69 22 15 19 18 19 32 55 71]

CSST = [19 18 13 7 0 -5 -7 -3 1 5 10 15] %ColdSemiNorthTemp

CSSP = [31 30 29 15 14 15 15 10 18 22 44 46]

Temp = [ST; ST; ST; ST; ST; ST; MNT; ST; CSNT; WSNT; TDNT; HCT; HSNT; TWT; HCT; MNT; TWT; TWT; WSST; CSST; TWT; TDST; HSST; ST; MNT; MNT; ANT; TDNT; MNT; MNT ;ANT; ANT; TDNT; TDST; WSST ;HCT; WSNT; ANT; ANT; TDNT; TDST; WSST; ST ;HCT; WSNT; AST; TDST; WSST; CSNT; WSNT; TWT; HCT; ST ;HSNT; TWT; CSNT; CSNT; HSNT; TDNT; TWT ;WSST; HCT; HSNT; TWT; TWT ;WSST; AST; ST; TWT; WSST; WSST; MST; ST; MST; MST]

Prec = [SP; SP; SP; SP; SP; SP; MNP; SP; CSNP; WSNP; TDNP; HCP; HSNP; TWP; HCP; MNP; TWP; TWP; WSSP; CSSP; TWP; TDSP; HSSP; SP; MNP; MNP; ANP; TDNP; MNP; MNP ;ANP; ANP; TDNP; TDSP; WSSP ;HCP; WSNP; ANP; ANP; TDNP; TDSP; WSSP; SP ;HCP; WSNP; ASP; TDSP; WSSP; CSNP; WSNP; TWP; HCP; SP ;HSNP; TWP; CSNP; CSNP; HSNP; TDNP; TWP ;WSSP; HCP; HSNP; TWP; TWP ;WSSP; ASP; SP; TWP; WSSP; WSSP; MSP; SP; MSP; MSP]

month = 1;

for i = 1:1:75

TempDiff(i) = 2*abs(Temp(i,month) - MNT(month))+abs(Temp(i,month) - WSST(month))+2*abs(Temp(i,month) - HSNT(month))+4*abs(Temp(i,month) - HCT(month)) + abs(Temp(i,month) - TDNT(month)) + abs(Temp(i,month) - WSNT(month));

PrecDiff(i) = 2*abs(Prec(i,month) - MNP(month))+abs(Prec(i,month) - WSSP(month))+2*abs(Prec(i,month) - HSNP(month))+4*abs(Prec(i,month) - HCP(month)) + abs(Prec(i,month) - TDNP(month)) + abs(Prec(i,month) - WSNP(month));

CloseTo22(i) = Temp(i,month)-22;

end

52

Team 2017019 Page 53

(2*MNT(month)+WSST(month) +2*(HSNT(month))+HCT(month))/6;

(2*MNP(month)+WSSP(month) +2*(HSNP(month))+HCP(month))/6;

CSNP(month);

AverageTempDiff = TempDiff/11

AveragePrecDiff = PrecDiff/11

CloseTo22(30)

Time = [2 19 2 14 3 3 3 4 4 3 5 5 6 5 6 6 4 5 6 7 6 7 7 10 11 11 11 9 12 12 11 11 11 11 12 13 12 13 12 12 12 13 12 15 14 13 13 13 16 15.5 15.5 17 18 16.5 15.5 18 18 18 18 17 18 20 19 18 19 19.5 19.5 19 20 20 20 20 24 24 24]

for i = 1:1:75

N = Time(i) - Time(15);

if (N >= 12)

N = abs(N-24)/2;

elseif (N < -12)

N = N+24;

elseif(N < 0)

N = abs(N)/2;

end

N1 = Time(i) - Time(59);

if (N1 >= 12)

N1 = abs(N1-24)/2;

elseif (N1 < -12)

N1 = N1+24;

elseif(N1 < 0)

N1 = abs(N1)/2;

end

N2 = Time(i) - Time(57);

if (N2 >= 12)

N2 = abs(N2-24)/2;

elseif (N2 < -12)

N2 = N2+24;

elseif(N2 < 0)

N2 = abs(N2)/2;

end

N3 = Time(i) - Time(58);

if (N3 >= 12)

N3 = (N3-24)/2;

elseif (N3 < -12)

N3 = N3+24;

elseif(N3 < 0)

N3 = abs(N3)/2;

end

N4 = Time(i) - Time(37)

if (N4 >= 12)

N4 = abs(N4-24)/2;

elseif (N4 < -12)

N4 = N4+24;

elseif(N4 < 0)

N4 = abs(N4)/2

end

N6 = Time(i) - Time(71);

if (N6 >= 12)

N6 = abs(N6-24)/2;

53

Team 2017019 Page 54

elseif (N6 < -12)

N6 = N6+24;

elseif(N6 < 0)

N6 = abs(N6)/2;

end

N5 = Time(i) - Time(30);

if (N5 >= 12)

N5 = abs(N5-24)/2;

elseif (N5 < -12)

N5 = N5+24;

elseif(N5 < 0)

N5 = abs(N5)/2;

end

Timescore(i) = 2*N+N1+N2+2*N3+2*N4+2*N5+N6;

Timescore1(i,:) = [2*N+N1+N2+2*N3+2*N4+2*N5+N6];

end

TotalFlightHours = [87.03053512, 77.21702092, 89.3114396 , 71.33513886, 90.57668054, 104.37014666, 119.78521709, 90.70880217, 104.73475096, 121.2579614 , 138.4544529 , 102.76646222, 120.19873365, 139.71583571, 99.31715915, 117.10616237, 138.06904057, 156.62617024, 168.47776367, 171.23772276, 132.05585338, 149.02745538, 161.32409503, 77.81167167, 84.11015706, 94.87559936, 102.58574605, 114.09728647, 74.10780611, 75.49334439, 90.0760962 , 101.51751489, 109.06721186, 120.14344491, 134.14203456, 71.74351602, 71.52407971, 80.57818162, 87.54523284, 94.78391646, 102.17838534, 113.40397055, 128.26683542, 70.82512582, 80.4619578 , 93.68671126, 108.71154509, 124.50904441, 70.9751981 , 78.15620601, 90.30416138, 71.38181956, 74.46918398, 78.5655793 , 87.67226758, 73.05653874, 74.48253733, 77.45212227, 87.66809126, 106.22522092, 127.18809912, 77.94331413, 82.97016646, 95.26680612, 107.77970827, 116.77245008, 130.45445015, 84.87919737, 116.74948219, 124.63184075, 136.35741481, 152.1633594 , 91.72594447, 145.57006125, 160.18410443]

AverageFlightHours = TotalFlightHours/11;

AveSleepLoss = Timescore/11 + AverageFlightHours/2;

WorkPercentLoss = AverageTempDiff/10 + AveragePrecDiff/100 + abs(CloseTo22)*11/100 + AveSleepLoss*6/8

month = 1;

for i = 1:1:75

TempDiff1(i,:) = [abs(Temp(i,month) - MNT(month)), abs(Temp(i,month) - MNT(month)),abs(Temp(i,month) - WSST(month)),abs(Temp(i,month) - HSNT(month)),abs(Temp(i,month) - HSNT(month)),abs(Temp(i,month) - HCT(month)),abs(Temp(i,month) - HCT(month)),abs(Temp(i,month) - HCT(month)),abs(Temp(i,month) - HCT(month)),abs(Temp(i,month) - TDNT(month)),abs(Temp(i,month) - WSNT(month))];

PrecDiff1(i,:) = [abs(Prec(i,month) - MNP(month)),abs(Prec(i,month) - MNP(month)), abs(Prec(i,month) - WSSP(month)),abs(Prec(i,month) - HSNP(month)),abs(Prec(i,month) - HSNP(month)),abs(Prec(i,month) - HCP(month)),abs(Prec(i,month) - HCP(month)),abs(Prec(i,month) - HCP(month)),abs(Prec(i,month) - HCP(month)),abs(Prec(i,month) - TDNP(month)),abs(Prec(i,month) - WSNP(month))];

CloseTo22(i) = Temp(i,month)-22;

end

STDTempDiff = std(TempDiff1’)

STDPrecDiff = std(PrecDiff1’)

STDTimescore = std(Timescore1’)

STDFlightTimes = [1269.09672493, 1375.50004624, 1445.12816594, 1867.78773924, 1707.04097353, 1568.51463696, 1440.17340638, 2002.28676006, 2145.56762944, 2137.07541821, 2008.81194762, 2711.66370924, 2818.70910545, 2682.62642922, 3132.73901981, 3272.54811968, 3092.65862397, 2863.03388329, 2429.2136036 , 1769.16009225, 3051.27131252, 2719.41994211, 2266.12978796, 2644.94158006, 3081.77570016, 2962.43603742, 2755.25656 , 2364.97331494, 2547.01373423, 2941.81588873, 2501.15958323, 2073.26554251, 1774.54393876, 1335.70890731, 867.31494053, 2361.93230545, 2576.07759186, 2235.6285122 , 1966.75554606, 1696.45528729, 1438.57541677, 1110.2681464 , 907.22353713, 2124.87476785, 1784.18765449, 1500.75499414, 1388.91302254, 1440.17340638, 1807.09355806, 1762.02878349, 1854.05410202, 1730.11833687, 1966.97197682, 2157.95656703, 2431.82195377, 1769.16009225, 2265.61147883, 2599.42105503, 2863.03388329, 3092.65862397, 3272.54811968, 1634.6149162 , 2266.12978796, 2719.41994211, 2971.57149095, 3128.94904413, 3330.92074444, 1312.61244585, 2656.3504515 , 2885.37883798, 3203.32224653, 3202.89921022, 972.98067854, 2867.18512923, 3081.77570016]/560

EqualingScore = STDTempDiff/10 + STDPrecDiff/100 + abs(CloseTo22)*11/100 + STDTimescore*6/8+STDFlightTimes*6/8

Cost = [20678.23203711909, 18085.070122828656, 19917.324522819617, 16075.66170145613, 20103.199031306594, 24915.11547416138, 28501.665091473664, 20757.545038455362, 23417.57981426823, 28553.487819395377, 29879.748844284175, 24715.191283596643, 27916.253095147764, 30701.824812714993, 23935.268331879284, 27012.165062497235, 30811.977741415492, 34652.85821120987, 36764.85361253032, 37435.09890498693, 29149.392309241717, 33135.10660384754, 37176.2158929182, 20221.148554760497, 20930.783868249313, 21882.972052976434, 23126.787375106385, 25762.399964440596, 18464.537277892756, 19312.310449492128, 22077.590086303953, 22960.689162338338, 25018.2952412553, 27794.809653086017, 31330.1817447764, 17106.18597248733, 16950.76792244504, 20298.749718940464, 21850.762111770706, 21929.99589275557, 22943.473484475573, 25816.900208131763, 29311.156527261603, 15552.101242396691, 21121.694177376256, 21944.90075049266, 24097.680756385216, 27345.38397545674, 17387.162601646225, 18928.458895244035, 21090.794106463254, 15876.323485941713, 16438.333822479828, 18782.189340805024, 19633.05525444589, 17850.950161943474, 17563.097645833812, 19827.730458242193, 22107.190855720546, 25112.071325514913, 29175.88400443317, 17641.395386239445, 20749.833174012212, 22293.942463082865, 22969.812898244723, 25656.09462763981, 29203.940274135522, 18988.95675556645, 26762.340825716787, 26798.799871393556, 32361.71228808786, 34279.16347550704, 20351.069083276914, 33443.50899735392, 35730.265198681096]

FindIt = WorkPercentLoss + Cost*0.002+EqualingScore

c = [0,1/121,2/121];

e = [0,0.5,1];

for k = 1:1:size(c,2)

for i = 1:1:size(e,2)

Istanbul(i,k) = EqualingScore(37)*e(i)+Cost(37)*c(k)+WorkPercentLoss(37);

Khartoum(i,k) = EqualingScore(40)*e(i)+Cost(40)*c(k)+WorkPercentLoss(40);

Perm(i,k) = EqualingScore(44)*e(i)+Cost(44)*c(k)+WorkPercentLoss(44);

end

end

54

Team 2017019 Page 55

CO(:,:,1) = zeros(3); % red

CO(:,:,2) = zeros(3);

CO(:,:,3) = ones(3); % blue

CO2(:,:,1) = zeros(3); % red

CO2(:,:,2) = ones(3);

CO2(:,:,3) = zeros(3); % blue

CO3(:,:,1) = ones(3); % red

CO3(:,:,2) = zeros(3);

CO3(:,:,3) = zeros(3); % blue

surf(c,e,Istanbul,CO)

hold on

surf(c,e,Khartoum,CO2)

surf(c,e,Perm,CO3)

title(’How Location Choice Changes as Cost and Equality are Considered’)

xlabel(’Weight Given to Total Cost’)

ylabel(’Weight Given to Equality Value’)

zlabel(’Total Score’)

clf

figure(1)

t = linspace(1,75,75);

k = [0,1/10,5];

size(k,2)

for i = 1:1:size(k,2)

TotalScore(i,:) = EqualingScore*k(i)+WorkPercentLoss

end

surf(t,k,TotalScore)

WorkPercentLoss(37)

figure(2)

plot(k,TotalScore(:,37),’r--’)

hold on

plot(k,TotalScore(:,40),’b’)

plot(k,TotalScore(:,35),’g’)

legend(’Istanbul’,’Khartoum’,’Cape Town’)

xlabel(’How much do we care about equalizing the meeting over boosting total production’)

ylabel(’Score of Location (Lower is better)’)

title(’How the Location changes depending upon the weight of Equalization’)

16.6 Formulas

To determine the Percent of Work Productivity Lost when choosing different locations, we used this formula:

L = .8S + .11C + 0.1dT + 0.01dP

Where L is the Percent Work Loss, S is sleep deprivation, C is the deviation from 22 degrees Celsius, dT is the
average absolute change in Temperature, and dP is the average absolute change in Precipitation.

For the Total Score, including Work Loss, Equality, and Cost, we used this formula:

Score = Productivity + c1 ∗ Equality + c2 ∗ Cost

Where c1 and c2 represent how much weight is given to Equality and Cost respectively.
To determine the cost per percent productivity, we used the following steps:

AvgHotelCost

1night
∗ 1night

8hourssleep
∗ 4hoursleep

3%productivity
=

$34.4

1%productivity

55

Team 2017019 Page 56

16.7 Derivations

16.7.1 Haversine Formula

Source 19 states that for any two points on a sphere, the haversine of the central angle between them is given
by

hav(
d

r
) = hav(ρ2 − ρ1) + cos(ρ1) cos(ρ2)hav(λ2 − λ1) (2)

where

• hav is the haversine function:

hav(θ) = sin2(
θ

2
) =

1− cos(θ)

2
(3)

• d is the distance between the two points (along a great circle of the sphere),

• r is the radius of the sphere,

• p1 and p2 are, respectively, latitude of point 1 and latitude of point 2 in radians,

• λ1 and λ2 are, respectively,longitude of point 1 and longitude of point 2 in radians.

Solve for d by applying the inverse haversine (if available) or by using the arcsine function:

d = rhav−1(h) = 2r arcsin(
√
h) (4)

where h is hav(d
r), or more explicitly:

d = 2r arcsin
(√

hav(ρ2 − ρ1) + cos(ρ1) cos(ρ2)hav(λ2 − λ1)
)

(5)

= 2r arcsin

(√
sin2

(ρ2 − ρ1
2

)
+ cos(ρ1) cos(ρ2) sin2

(λ2 − λ1
2

))
(6)

56

