
Team	#2017007	
	

1	

For office use only	

T1 _______________
T2 ________________
T3 ________________
T4 ________________

Team Control Number

2017007

For office use only	

F1 ________________
F2 ________________
F3 ________________
F4 ________________

2017

The International Mathematical Modeling Challenge (IM2C) Summary Sheet

 Nowadays, there are many international meetings that are being held worldwide.

However, the time gap makes each participant to get tired easily. Since the meeting

should be productive, the location of the meeting is very important. To find the

most appropriate meeting location, we developed a mathematical model.

 In our model, we included following concepts; Fatigue, Efficiency of work, Body

Cycle, Sleeping and the Time Gap. First, we described the increasing rate of the

fatigue with the efficiency and sleeping, where their coefficients are the function of

the body cycle value. Then, we defined the body cycle as a periodic function of

time. Thirdly, we made a function of efficiency by the fatigue. Using these three

relationship, it was able to calculate the fatigue value at the time 𝑡.

 Then, we calculated the time gap and time of flight depending on the locations.

Assuming that everyone adapts to the new timeline in three days, we modified the

body cycle function showing the change of the body cycle while adaptation. With

the new body cycle function, it was able to calculate the fatigue during the meeting,

which is held right away after the flight.

 Using our model, we calculated the productivity of meeting. Then, developed two

methods to find the meeting location with the maximum productivity. One method

used divide-and-conquer tactics, by repeating ‘zoom in’ to the subpart of the map

with the maximum productivity. Second method used greedy search, by calculating

the productivity of the meeting at every airport. Either way, we got the most

appropriate location for the given examples, and the answers from both ways were

similar.

 Our model describes the tiredness and the efficiency accurately, matching all the

preceding model and researches about human tiredness. By using our model and

algorithms, it finds the most appropriate meeting location quickly and precisely.

Team	#2017007	
	

2	

Table of Contents

I. Introduction .. 3

II. Assumptions and Justifications ... 4

III. Flight Time Estimation .. 5

IV. Relationship between Fatigue and Efficiency 6

1. Fatigue	...	7	

2. Efficiency	...	9	

3. Coefficient	values	..	10	

V. Change of Body Cycle after the Flight 13

VI. Maximizing the Productivity of the Meeting 15

1. Definition	of	productive	meeting	..	15	

2. Algorithms	to	find	appropriate	location	..	16	

VII. Scenario 1) “Small meeting” .. 18

VIII. Scenario 2) “Big meeting” .. 20

IX. Conclusion ... 21

X. Appendix .. 22

XI. References ... 47

Team	#2017007	
	

3	

I Introduction
 Recently, there are many international meetings that are being held worldwide.

Unfortunately, yet, it is seemed to be an anomaly to perfectly manage every

need that engage in these conferences. In academic sense, there are so many

variables to consider that it is almost impossible to determine where would be

the best place to the conference, when would it be, and so on. To eliminate

this anxiety, we should make an alternate solution or revamp the former one

to choose the place to hold meeting that maximizes the efficiency of the

meeting. The productivity of the meeting is decided by the fatigue of each

participant. To maximize the productivity, it’s important to control the fatigue.

 So, we made a mathematical model that can estimate the fatigue of each

participant. Fatigue depends on the work done and the rest taken. Using the

relationship between the work done and the fatigue, relationship between

fatigue and time is found.

 When the participant travels to another place, the mismatch of his/her body

cycle will disturb both the work and rest. By considering the time gap between

home and the meeting place, it was possible to calculate the productivity

through three days.

 In total, our model calculates the participant’s fatigue by time considering

1. Efficiency of the work

2. Time of sleep

3. Body cycle

 And the participant’s efficiency of the work is determined by

1. The participant’s fatigue

 By calculating the fatigue of each participant, it was possible to calculate the

total time of productive meeting. Then, we developed the algorithm to search

for the location with the maximum value of the total time of productive

meeting. We applied our algorithm to the given examples, and was able to find

the best place for the meeting.

Team	#2017007	
	

4	

II Assumptions and Justifications
 Before developing the model, we made some assumptions to justify our model.

Followings are the assumptions we made.

l Assumption 1. Every participant’s schedule is identical. Sleeps at 0~8,

and the meeting is done from 8~24. They act ideally.

Justification Since each participants contributes equally, we set every

participant identical except the home place.

l Assumption 2. It takes three days to perfectly adapt one’s body cycle

to the new place.

Justification Average time that takes to get used to the new time

zone is known to be 3 days.

l Assumption 3. The plane flies in the fastest direction, which is the

great circle of the globe. Ignore the air streams.

Justification Planes in real life actually fly near the great circle. Also,

to get the average flight time, we ignored the air streams.

l Assumption 4. Every participants arrives at the same time, right before

the meeting starts.

Justification Since we can’t let them to stay for a long time, we

assumed that their staying time at the meeting area is identical.

l Assumption 5.	In terms of each locations of the participants, we only

consider the time difference as a variable.

Justification Since the meeting is processed at indoors, other factors

such as weather or climate does not affect a productivity of the

meeting considerably.

 Also, for the following research, we defined following variables.

l 𝑡: The time variable.

l 𝐹(𝑡): Tiredness/fatigue in scale of 0 to 1. Function of time.

l 𝐸 𝑡 : Efficiency, the rate of production. The range is 0 to 1.

Team	#2017007	
	

5	

l 𝐵(𝑡): The function representing the body cycle. Function of time.

l 𝑃(: The point on the globe that corresponds to the home place.

l 𝑃): The point on the globe that corresponds to the meeting place.

l 𝑑: The distance between 𝑃(and 𝑃).

l 𝜑: The time gap between 𝑃(and 𝑃).

l 𝐿: The lowest value of efficiency that we consider ‘productive’. If the

efficiency value is higher than 𝐿, then he/she is productive.

III Flight Time Estimation
 For a given two locations, each set to the departing and arriving places, we

find the shortest time needed to move between those spots. And indeed, we

would assume the shape of the earth as a sphere, and use a spherical

coordinate for convenience.

 Let the coordinates of two positions be 𝑃(𝑟/, 𝜃(, 𝜙(, 𝑃) 𝑟/, 𝜃), 𝜙) .

	
Fig.		1	Distance	between	two	positions	

	
 For the plane α that passes through the origin O and two given points 𝑃(, 𝑃),

it is well known that the smallest distance between 𝑃(, 𝑃) is the length of arc

along the great circle, which is formed by the intersection of the given sphere

and the plane α. By this fact, we simply get the length of arc by discovering

the angle between two vectors 𝑂𝑃(and 𝑂𝑃). Then the shorter distance d along

the great circle would be as following.

Team	#2017007	
	

6	

𝑑 =
𝑟/ + ℎ:
𝑢 cos?(cos𝜙(cos𝜙) cos 𝜃(− 𝜃) + sin𝜙(sin𝜙) 					(𝟑 − 𝟏)

where 𝑟/ is the earth’s radius, 𝑢 is the velocity of an airplane, and ℎ: is the

height of an airplane. Average height of an airplane is ℎ: = 36000𝑓𝑡.

 We don’t need to consider the date line when it comes to the duration of

flight. This is because that we just have to earn the time difference in a body

cycle that repeats with 24 hours’ period. Also absolute difference of local time

results in longitude shift, and its relationship is given as follows.

𝜑 =
𝜙) − 𝜙(
2𝜋 ∙ 24ℎ𝑟						(𝟑 − 𝟐)

Let’s go on with two simple examples. For the given two positions that is given

by its spherical coordinates, calculate the time duration that is needed to be

spent by the airplane. We supposed that plane’s speed is 508.16mph.

Table	1	Comparison	between	calculated	and	actual	flight	duration	

(latitude/longitude) city 1 city2 Duration Actual Duration

Case 1
Incheon

(37.47/126.45)

Dallas

(32.85/-96.85)
13.47hr 13.53hr

Case 2
Sofia

(46.70/23.41)

Tokyo

(35.67/139.75)
10.87hr 11.35hr

IV Relationship between Fatigue and Efficiency
 We have to maximize the overall productivity of the meeting. Overall

productivity is an abstract concept, so we decided to concern rate of production.

Further explanation, we use term ‘efficiency’ as a rate of production. According

to normal people’s experience, fatigue is a major factor of rate of production.

We consider fatigue as only factor of rate of production and contain other

minor factors into fatigue. Now, rate of production is function that only depend

on fatigue.

Team	#2017007	
	

7	

1. Fatigue

 Fatigue is also an abstract concept. So we invest fatigue with validity by minor

items. If we can represent fatigue as a function of measurable parameters,

fatigue can be treated as an objective validity. We choose parameters which

affect to fatigue as efficiency, sleep time, body cycle, and time difference. These

are well known fatigue factors and less different types of people. More

concretely, we give details about parameters.

 First, efficiency. Fatigue is caused by mental or physical labor. Meeting is kind

of both mental and physical labor. So, fatigue is affected by efficiency. How

much we feel tired is proportional to amount of work, so we can empirically

say that change of fatigue rate is proportional to efficiency. (NO
NP
	∝ 𝐸) However,

the coefficient factor of efficiency is not constant. It depends on the type of

work and the body condition. Since the type of work is fixed as a meeting, only

body condition, or body cycle affects the coefficient factor. Body cycle is a

function of 𝑡, so we defined the coefficient of efficiency as 𝑓((𝑡).

𝑑𝐹
𝑑𝑡 = 	𝑓(𝑡 𝐸							(𝟒 − 𝟏)

 Sleep time is a second factor. Fatigue can be reduced by sleeping or resting.

Since problem states “three intensive days”, so we ignored daytime resting and

only considered sleeping. Sleeping activity resolves the tiredness, so we set the

sleeping time to affect fatigue on its increasing rate. To express the sleeping

time, we set a function 𝑅(𝑡), which takes value of 1 while sleeping, and 0 while

not.

𝑅 𝑡 = 1, 0 ≤ 𝑡 ≤ 8
0, 8 ≤ 𝑡 ≤ 24							(𝟒 − 𝟐)

 Adding the sleeping factor to equation (4-1), the following equation for

fatigue is derived.

𝒅𝑭
𝒅𝒕 = 	𝒇𝟏 𝒕 𝑬 − 𝒇𝟐 𝒕 𝑹							(𝟒 − 𝟑)

Team	#2017007	
	

8	

 Third, body cycle affects the fatigue. People has their own cycle. It depends

on people’s characteristic and environment. Since we assumed that every

participant’s characteristics are identical, so in our modeling, environment is

the only factor of body cycle. Sleeping, day and night, and amount of insolation

is major item of body cycle. Furthermore, sleeping, day and night is a

phenomenon caused by an amount of insolation, so body cycle is function of

amount of insolation. Amount of insolation changes by the altitude of sun.

Altitude of the sun follows sinusoidal relationship by the time. To return the

maximum value at noon and return the minimum at midnight, 𝐵 𝑡 ,	 the

function of body cycle by the time 𝑡 is defined as the following.

𝑩 𝒕 = 𝐬𝐢𝐧
𝟐𝝅	
𝟐𝟒𝒉𝒓 (𝒕 − 𝟔) 							(𝟒 − 𝟒)

 It is not directly affect to fatigue. But body cycle affects the overall body

function. So, it determines fatigue causes’ influence rate, represented as

coefficient of fatigue causes’. As a result, It will affect as a coefficient of E and

G, which are 𝑓((𝑡) and 𝑓)(𝑡). When body cycle function’s value is positive, it

means people don’t get tired too much. So coefficient of fatigue causes’, 𝑓(𝑡

is small. Also, sleeping activity at noon doesn’t resolve the fatigue effectively

than at night. So positive body cycle value makes 𝑓) 𝑡 small, too. Since it has

to change body cycle’s value drastically when the value is at average region

and change body cycle’s value fluently when value is extremal.

	
Fig.		2	Graph	of	𝒇𝟏 𝑩 	and	𝒇𝟐 𝑩

Team	#2017007	
	

9	

 So we choose tanh 𝑥 function to express this kind of movement of coefficient.

When we set the equation to follow Fig.2’s tendency, precise equation of 𝑓(𝑡

and 𝑓) 𝑡 can be written as the following.

𝒇𝟏 = 	
𝒄𝒎𝒂𝒙 + 𝒄𝒎𝒊𝒏

𝟐 −	
𝒄𝒎𝒂𝒙 −	𝒄𝒎𝒊𝒏

𝟐 𝐭𝐚𝐧𝐡(𝟑𝑩(𝒕))							(𝟒 − 𝟓)

𝒇𝟐 = 	
𝒅𝒎𝒂𝒙 + 𝒅𝒎𝒊𝒏

𝟐 −	
𝒅𝒎𝒂𝒙 −	𝒅𝒎𝒊𝒏

𝟐 𝐭𝐚𝐧𝐡(𝟑𝑩(𝒕))							(𝟒 − 𝟔)

2. Efficiency

	People can only work hard when they are lively. If he/she is tired enough,

his/her productivity gets a rapid decrease. Considering this characteristic, we

can set efficiency as a function of fatigue. People feel extreme tiredness when

their fatigue exceed the critical point. However, except the interval near the

critical point 𝑝v , change of efficiency is subtle. Using tanh 𝑥 function, we

expressed the function of efficiency by the fatigue as the following.

𝑬 = 𝒉 𝑭 = 	
𝟏
𝟐 −	

𝟏
𝟐	𝐭𝐚𝐧𝐡(𝒌 𝑭 − 𝒑𝒄)							(𝟒 − 𝟕)

	
Fig.		3	Graph	about	efficiency	and	fatigue	

	
 We decided to consider a person as “efficient” if the one’s efficiency is bigger

than the average of maximum and minimum efficiency.

 These are the major equations derived.

Team	#2017007	
	

10	

Table	2	Major	differential	equations	about	fatigue	

Variable Equations

Fatigue 𝑭
𝒅𝑭
𝒅𝒕 = 	𝒇𝟏 𝒕 𝑬 − 𝒇𝟐 𝒕 𝑹							(𝟒 − 𝟑)

 𝒇𝟏 𝒇𝟏 𝒕 =
𝒄𝒎𝒂𝒙 + 𝒄𝒎𝒊𝒏

𝟐 −	
𝒄𝒎𝒂𝒙 −	𝒄𝒎𝒊𝒏

𝟐 𝐭𝐚𝐧𝐡(𝟑𝑩(𝒕))							(𝟒 − 𝟓)

 𝒇𝟐 𝒇𝟐(𝒕) = 	
𝒅𝒎𝒂𝒙 + 𝒅𝒎𝒊𝒏

𝟐 −	
𝒅𝒎𝒂𝒙 −	𝒅𝒎𝒊𝒏

𝟐 𝐭𝐚𝐧𝐡(𝟑𝑩(𝒕))						(𝟒 − 𝟔)

Body

Cycle
𝑩 𝑩 𝒕 = 𝐬𝐢𝐧

𝟐𝝅	
𝟐𝟒𝒉𝒓 (𝒕 − 𝟔) 							(𝟒 − 𝟒)

Efficiency 𝑬 𝑬 = 𝒉 𝑭 = 	
𝟏
𝟐 −	

𝟏
𝟐	𝐭𝐚𝐧𝐡(𝒌 𝑭 − 𝒑𝒄)							(𝟒 − 𝟕)

3. Coefficient values

 We developed the model about one’s fatigue and efficiency. However, the

coefficients are currently unknown. To estimate the fatigue value, we need to

get 𝑐{|}, 𝑐{~�, 𝑑{|}, 𝑑{~�, 𝑘, 𝑝v values. Since it is hardly possible to compare with

the real values, we decided to compare with the model developed in the

preceding research.

 In the preceding research “Sleep Homeostasis and Models of Sleep Regulation,

Borb, A. A., & Achermann, P. (1999).”, one’s fatigue can be estimated by

following two differential equations.

𝑑
𝑑𝑡 𝑆𝑊𝐴 𝑡 = 𝑟𝑐𝑆𝑊𝐴 𝑡 1 −

𝑆𝑊𝐴 𝑡
𝑆 𝑡

𝐹(𝑡)
𝐹�

− 𝑓𝑐� 𝑆𝑊𝐴 𝑡 − 𝑆𝑊𝐴� 𝑅 𝑡

− 𝑓𝑐� 𝑆𝑊𝐴 𝑡 − 𝑆𝑊𝐴� 𝑊(𝑡)									(𝟒 − 𝟖)
𝑑
𝑑𝑡 𝐹 𝑡 = −𝑔𝑐𝑆𝑊𝐴 𝑡 + 𝑟𝑠(𝐹� − 𝐹(𝑡))									(𝟒 − 𝟗)

 Which contains two dependent function 𝐹(𝑡) and 𝑆𝑊𝐴(𝑡) . Using the

assumption 1, the sleeping is processed during 0 a.m. to 8 a.m., and the rest

of the time is assigned to activities.

Team	#2017007	
	

11	

 The constants in the equation (4-8, 9) are the following values.

Table	3	Constants	described	in	preceding	research	

𝒇𝒄 𝒇𝒄𝑹 𝒇𝒄𝑾 𝒈𝒄 𝒓𝒔 𝑺𝑾𝑨𝑳 𝑺𝑾𝑨 𝒕 𝑭𝑼 𝑭 𝟎

0.283 0.236 1 0.00835 0.0009167 0.0177 0.083 1 0.5563

 By this assumption, 𝑅(𝑡) is empirically defined by 1 at the domain from 0 to

8 a.m., rest of the part would be zero. In directly opposite way, 𝑊(𝑡) would

have the value given 0 at the domain from 0 to 8 a.m., rest of the part would

be 1.

𝑊 𝑡 = 0, 0 ≤ 𝑡 ≤ 8
1, 8 ≤ 𝑡 ≤ 24									(𝟒 − 𝟏𝟎)

 Since our model and the preceding research’s model are both 1st-order

nonlinear differential equation, by using the Runge-Kutta Method, it is possible

to find the numerical solution for the given system of differential equations.

For the solution of preceding research, one’s fatigue during the 200days

converges into specific periodic function that is constrained in particular interval.

In the converging interval, the maximum fatigue value is 𝐹{|} = 0.753331, the

minimum fatigue value is 𝐹{~� = 0.598703.

	
Fig.		4	The	fatigue	of	first	240	hours	calculated	by	preceding	model

 Using the converging preceding model, we sorted out the data for 3days and

determined the most appropriate coefficients that would best match with the

theoretical value, by varying 6 coefficients, 𝑐{|}, 𝑐{~�, 𝑑{|}, 𝑑{~�, 𝑘, 𝑝v .

Team	#2017007	
	

12	

 We chose the most appropriate coefficients by the following criterion.

1. For the tuples of specific coefficients (𝑐{|}, 𝑐{~�, 𝑑{|}, 𝑑{~�, 𝑘, 𝑝v), after

50 days passed, it converges to specific periodic function.

2. Since it converges to certain function after 50 days, we pick the data for 3

days after the 50 days passed.

3. From the data that converged to the theoretical value, and the data

mentioned right above, we operate the data for the 3 days in 0.01-hour gap

to earn 7200 deviations total.

4. Finding the most appropriate tuples of the coefficients is equivalent to the

smallest RMS(root-mean-squared) average of the 7200 deviations above.

 From the step given here, we earn the most appropriate tuples of the

coefficients.

	
Fig.		5	Comparison	between	our	model	and	preceding	model	on	first	240	hours	
	

	
Fig.		6	Comparison	between	our	model	and	preceding	model	when	they	converges

Team	#2017007	
	

13	

Table	4	Results	of	most	appropriate	coefficients	
𝒄𝒎𝒂𝒙 𝒄𝒎𝒊𝒏 𝒅𝒎𝒂𝒙 𝒅𝒎𝒊𝒏 𝒌 𝒑𝒄
0.0003	 0.00004	 0.0003	 0.00005	 3.0	 0.60	

 Using these coefficient values, we can rewrite the equations for our model.

Table	5	Major	equations	with	real	values	

Variable Equations

Fatigue 𝑭
𝒅𝑭
𝒅𝒕 = 	𝒇𝟏 𝒕 𝑬 − 𝒇𝟐 𝒕 𝑹							(𝟒 − 𝟑)

 𝒇𝟏 𝒇𝟏 𝒕 = 𝟎. 𝟎𝟎𝟎𝟏𝟕 − 𝟎. 𝟎𝟎𝟎𝟏𝟑 𝐭𝐚𝐧𝐡(𝟑𝑩(𝒕))							(𝟒 − 𝟏𝟏)

 𝒇𝟐 𝒇𝟐 𝒕 = 	𝟎. 𝟎𝟎𝟎𝟏𝟕𝟓 − 	𝟎. 𝟎𝟎𝟎𝟏𝟐𝟓 𝐭𝐚𝐧𝐡(𝟑𝑩(𝒕))							(𝟒 − 𝟏𝟐)

Body

Cycle
𝑩 𝑩 𝒕 = 𝐬𝐢𝐧

𝟐𝝅	
𝟐𝟒𝒉𝒓 (𝒕 − 𝟔) 							(𝟒 − 𝟒)

Efficiency 𝑬 𝑬 = 𝒉 𝑭 = 	
𝟏
𝟐 −	

𝟏
𝟐	𝐭𝐚𝐧𝐡(𝟑 𝑭 − 𝟎. 𝟔)							(𝟒 − 𝟏𝟑)

V Change of Body Cycle after the Flight
 The most important characteristic of the meeting is that it is held

internationally. This means that the fatigue of each participants differs

depending on the time gap. However, longer each participant stays, their body

cycle adapts to the local time of the meeting place. From the assumption 2,

they only take 72 hours to adapt to a new cycle.

Fig. 7 shows the adaption of the body cycle. The participant’s body cycle was

𝐵�, but when he arrives at the meeting place with the time gap of -6 hours, his

Fig.		7	Adaption	of	body	cycle

Team	#2017007	
	

14	

body cycle starts to adapt to 𝐵(. His body cycle while adapting is follows 𝐵. So,

his body cycle is expressed as following.

𝐵𝑜𝑑𝑦	𝑐𝑦𝑐𝑙𝑒
𝐵�(𝑡)	, (𝑡 ≤ 8)

𝐵(𝑡)	, (8 ≤ 𝑡 ≤ 80)
𝐵((𝑡)	, (80 ≤ 𝑡)

									(𝟓 − 𝟏)

 It is possible to get the general equation of 𝐵. Let’s fix the time axis to the

time at the meeting place. Then, 𝐵(𝑡 = sin)�
)��

(𝑡 − 6) . If he came from the

area with the time gap 𝜑	(−12ℎ𝑟 ≤ 𝜑 ≤ 12ℎ𝑟, 𝜑 ≡)��
¢£�°

(𝜙) − 𝜙()) , then the

previous body cycle 𝐵� 𝑡 = sin)�
)��

(𝑡 − 6 − 𝜑) . Using 𝐵�(𝑡) and 𝐵((𝑡), 𝐵(𝑡)

is the following.

𝐵 𝑡 = sin
2𝜋
24ℎ𝑟

72 + 𝜑 ℎ𝑟
72ℎ𝑟 𝑡 − 6 −

74𝜑
72 + 𝜑 , (8 ≤ 𝑡 ≤ 80)									(𝟓 − 𝟐)

 By this body cycle equation, we reflect assumption 2, which we need three

days to adapt to the time difference. Also, this equation made body cycle to

adjust gradually. So, by substituting this equation to the previous differential

equation (4-5, 6, 11, 12), we can estimate the fatigue value during the meeting.

	
Fig.		8	Estimated	fatigue	value	after	the	flight	
	

 The Fig. 8 shows the fatigue value of the participant who was from the home

place with the 12 hours of time gap.

Team	#2017007	
	

15	

VI Maximizing the Productivity of the Meeting

1. Definition of productive meeting
 In our problem, we have to choose place that maximize the overall productivity

of the meeting. So, we defined productivity of the meeting’s objective definition.

We used the concept we defined in previous steps to define the productivity

of the meeting. We found that in normal situation, the fatigue converges to a

periodic function. We used the maximum and minimum values of that period

function, which are 𝐹{|} = 0.753331 and 𝐹{~� = 0.598703.

 We defined a constant 𝐿 which is a boundary value to consider whether he/she

is productive or non-productive. We chose the value of 𝐿 as the following.

∃𝐿	𝑠𝑢𝑐ℎ	𝑡ℎ𝑎𝑡	ℎ 𝐿 =
ℎ 𝐹{|} + ℎ 𝐹{~�

2 = 0.672137

	
Fig.		9	Description	of	time	of	sleeping,	productive	and	non-productive	
	

Team	#2017007	
	

16	

 If somebody’s efficiency is higher than 𝐿, we considered “productive”. For the

meeting’s productiveness, productive meeting need many people’s productive

participation (since a meeting is cooperative work). If)
¢
 of all participants’

efficiency is higher than 𝐿, we can say that the meeting is a productive meeting.

 The following figure shows how to calculate the productive meeting time at

𝑛 = 3. Three color line shows the productive time of each participants. When

there are two or more productive participants, we can say the meeting is

productive.

	
Fig.		10	Diagram	showing	the	time	of	productive	meeting	when	n=3	
	

2. Algorithms to find appropriate location

 What we found before was the fatigue graph for each human being, based on

our model. Our eventual goal is to apply this graph into the condition of the

problem.

 The fatigue curve is maintained for general routine, and suddenly undertake

some change when that person hop into the airplane. Let’s say that the time

for taking the airplane is T. And the airplane is planned to arrive at 8 a.m. with

respect to the arrival local time. We may assume that the conference suddenly

starts right after the arrival without delay.

1. Calculating each participant’s time gap

 Their departing time would be 8 − T with respect to the arrival local time.

And we correspond the value 8 − T with the remainder modular 24.

Everyone repeats the pattern, and each one has the initial fatigue indicator

that is specified by the departure local time 8 − T − φ. After that, since they

are assumed to have a sleep during the whole flight time, fatigue

monotonously decreases.

Team	#2017007	
	

17	

2. Calculating each participant’s fatigue

 When they finish arriving to destination, fatigue gradually increases due

to the intense meeting schedule. Fatigue is accumulated, forming a zig-zag

increasing fatigue tendency by time.

 For a given criterion fatigue indicator f, while the fatigue is less than or

equal to f, we may say that ‘they work efficiently’. Then except for the

sleeping time, we can consider the net efficient time during the 72 hours,

respectively for each person. Step function that have a domain between 8h

to 72h is made (0 for non-efficiency or sleep, 1 for hardworking). For this

‘efficiency state function’, we consider the total sum of the graphs of every

individual participant.

3. Calculating the length of a meeting’s productive time

For total, say, n participants, we calculate the total sum graph of every n

graphs. And our criterion is)
¢
 ratio of efficient people to the total number

of people. For the time interval that the function is above that value (for

example, at least 4 people is needed to make sure that the conference is

being delivered well if there’s 6 people in total.), the total amount of the

time is our main interest. This is the function that puts out the total amount

of ‘efficient time’ for the given initial condition as following; ‘each

participant’s departing location’, ‘the location of meeting’. So, we have to

find the very input ‘the location of meeting’ which maximizes the total

amount of efficient time.

4. Searching for the appropriate meeting location

 Therefore, our goal is to discover the meeting location that maximizes the

efficient time. We have two methods to search the most appropriate

location of meeting.

i) Divide-and-Conquer method

 We divided the globe as subparts that is sectioned into 9 pieces, each of

the sizes and dimensions are equally distributed. In this manner, we find

an area that maximizes the functional output, and we made it more precise

by sectioning the area into 9 parts again, applying the same mechanism

Team	#2017007	
	

18	

on them. By this idea, we ultimately make the range of the optimal

conference place smaller and set more precise thesis about it.

	
Fig.	11	Finding	the	appropriate	location	using	Divide	and	Conquer	method

ii) Greedy search method

 In this method, we calculated the productive meeting time length for every

airport in the world. Since every participants arrives at the meeting place

by the plane, we assumed that the meeting place is placed near the airport.

It is possible to check all the airports, so we used greedy method and chose

the place with the maximum productive meeting time length.

VII Scenario 1) “Small meeting”
	We have to find the place with the maximum “productive meeting” time. We

used both Divide-and-Conquer method and greedy search method to find the

most appropriate location. First, we find maximum latitude and longitude by

Divide-and-Conquer method. Followings are the results of it.

Team	#2017007	
	

19	

	
Fig.	12	Comparison	of	total	productive	time	of	each	9	sections	at	step	1

Table	6	The	time	length	of	productive	meeting	for	each	sections	at	each	steps	

Steps #1 #2 #3 #4 #5 #6 #7 #8 #9

1st 14.40 13.48 18.74 14.71 22.99 20.00 13.51 25.98 30.69

2nd 27.43 25.28 27.67 27.07 30.69 29.06 29.59 31.49 31.35

3rd 31.58 30.29 29.26 31.81 31.35 29.4 32.45 31.90 29.52

4th 31.85 32.22 32.69 32.04 32.45 32.95 32.25 32.68 33.29

 By running algorithm 4 times, we can get location as specific as we want. Its

location is south altitude 22.365, and west longitude 98.176. But we got latitude

and longitude, so we need one more step. We have to find the nearest airport.

The nearest airport is Chile, Easter Island, Hanga Roa airport. By this method,

we can get exact location of maximum “productive meeting” time, but we need

one more steps to find airport. So we try other method to get appropriate

airport directly.

 Second, we compare every airport’s “productive meeting” time by greedy

search method. There are about 7000 airports. We get appropriate airports by

comparing about 7000 airports with our algorithm. As a result, Chile, Easter

island, Hanga Roa airport is the appropriate airport. Compare to the first

method, we got the same consequence. So both methods are able to find the

appropriate airport well.

0

5

10

15

20

25

30

35

#1 #2 #3 #4 #5 #6 #7 #8 #9

ho
ur
s

1day 2day 3day

Team	#2017007	
	

20	

Table	7	The	most	appropriate	location	found	by	each	method	

 Method 1 Method 2

Location 22°21′	54"S	98°	10′	33.6"W Chile, Easter Island, Hanga Roa

VIII Scenario 2) “Big meeting”
	We also have to find the place with the maximum “productive meeting” time.

Unlike scenario 1, scenario 2 has 11 people and some of them are even at the

same location. However, the method is identical since our algorithms calculates

each individual. Like Scenario 1, first, we find maximum latitude and longitude

by Divide-and-Conquer method. Followings are the results of it.

Table	8	The	time	length	of	productive	meeting	for	each	sections	at	each	steps	

Steps #1 #2 #3 #4 #5 #6 #7 #8 #9

1st 15.69 13.56 2.03 16.79 13.96 26.01 28.65 31.99 31.59

2nd 25.37 25.87 29.98 31.3 31.99 32.45 32.58 32.93 34.47

3rd 33.18 33.75 34.84 33.65 34.47 35.98 33.46 32.61 31.69

4th 35.09 35.69 36.36 35.42 35.99 36.62 35.47 35.12 34.67

5th 36.32 36.53 36.75 36.39 36.62 36.82 36.38 36.20 36.32

 By running algorithm 5 times, we can get location as specific as we want.

Location of it is south altitude 80.748, and west longitude 56.311. But we got

latitude and longitude, so we need one more step. We have to find the nearest

airport. The nearest airport is Grytoiken, South Georgia islands’ airport. By this

method, we can get exact location of maximum “productive meeting” time, but

we need one more steps to find airport. So we try other method to get

appropriate airport directly.

 Second, we compare every airport’s “productive meeting” time by greedy

search method. As a result, Grytoiken, South Georgia island’s airport is the

appropriate airport. Compare to the first method, we got the same

consequence. So both methods are able to find the appropriate airport well.

Team	#2017007	
	

21	

Table	9	The	most	appropriate	location	found	by	each	method	

 Method 1 Method 2

Location 80°	44′	52.8"S	56°	18′	39.6"W Grytoiken, South Georgia islands’ airport

IX Conclusion
 The given problem was to find the most appropriate meeting location to

maximize the productivity of meeting. We focused on the changing abstract

concept to objective concept. By reasonable relation between abstract concept

and objective concept, we can express abstract concept by equation of

computable items. We express productivity by efficiency, fatigue, body cycle,

sleeping time, and time difference.

 Since each participant are from different time zones, jet lag of each

participants affects the productivity. In our model, we defined a body cycle that

depends on the time zone. It was possible to derive the relationship between

the fatigue and efficiency of each one. We solved the equations numerically,

and was able to calculate the fatigue of each participant.

 With the fatigue values of each participant by the time, it was possible to

estimate the total time length of the meeting when it was productive. To find

the best location, we repeated these steps of calculation for several locations.

We developed two algorithms to find the best place. The one is using divide-

and-conquer method, by repeating the steps of dividing the map into subpart

and finding the best subpart. Other method is a greedy method, which checks

every airport in the world and finding the most appropriate location. Both

methods give us the same results, so we can say that both our algorithms to

find the optimal meeting location were valid.

.

Team	#2017007	
	

22	

X Appendix

1. Codes

A. Code for calculating the fatigue using our model

#include<stdio.h>

#include<math.h>

#define pi 3.141592653

#define T (24.0*60)

#define dt 1

#define c3 0.00004

#define c4 0.0003

#define c5 0.0003

#define c6 0.00005

#define k 3.0

#define pc 0.6

#define phi 0.0

FILE *fp1;

double Piro[999999];

double fp(double p)

{

 return 0.5-0.5*(tanh(k*(p-pc)));

}

double time(double t)

{

 while(t>24)

 {

 t-=24;

 }

 return t;

}

double rhythm(int t)

{

 double kk = 72/(72-phi);

Team	#2017007	
	

23	

 return sin(2*pi/(2400.0*kk)*(double)(t-600)+(2*pi/24)*phi);

}

double c1(int t)

{

 return (c3+c4)/2.0+(c4-c3)/2*tanh(3*rhythm(t));

}

double c2(int t)

{

 return (c5+c6)/2.0+(c6-c5)/2*tanh(3*rhythm(t));

}

double piroprime1(double p,int t)

{

 return c1(t)*fp(p);

}

double piroprime2(double p,int t)

{

 return -c2(t)*p;

}

void findpiro(int t)

{

 double k1,k2,k3,k4;

 double ti = (double)t/100.0;

 ti = time(ti);

 if(ti>8)

 {

 k1 = piroprime1(Piro[t],t);

 k2 = piroprime1(Piro[t]+0.5*dt*k1,t+0.5*dt);

 k3 = piroprime1(Piro[t]+0.5*dt*k2,t+0.5*dt);

 k4 = piroprime1(Piro[t]+dt*k3,t+dt);

 }

 else

Team	#2017007	
	

24	

 {

 k1 = piroprime2(Piro[t],t);

 k2 = piroprime2(Piro[t]+0.5*dt*k1,t+0.5*dt);

 k3 = piroprime2(Piro[t]+0.5*dt*k2,t+0.5*dt);

 k4 = piroprime2(Piro[t]+dt*k3,t+dt);

 }

 Piro[t+1] = Piro[t] + (1.0/6.0)*dt*(k1+2*k2+2*k3+k4);

 if(Piro[t+1]<=0)

 {

 Piro[t+1]=0;

 }

}

int main(void)

{

 fp1 = fopen("output.csv","w");

 Piro[0] = 0.6;

 int t;

 for(t=0;t<=T*100;t++)

 {

 findpiro(t);

 }

 for(t=(T-240)*100;t<=T*100;t++)

 {

 fprintf(fp1,"%d,%lf\n",t,Piro[t]);

 }

 fclose(fp1);

}

B. Code for calculating the fatigue using the preceding research

#include<stdio.h>

#include<math.h>

#define T (24.0*60.0)

Team	#2017007	
	

25	

#define h 0.01

#define rc 0.283

#define su 1

#define fcr 0.236

#define fcw 1

#define swal 0.0177

#define gc 0.00835

#define rs 0.0009167

FILE *fp1;

double S[999999];

double SWA[999999];

double time(double t)

{

 while(t>24)

 {

 t-=24;

 }

 return t;

}

int remt(int t)

{

 double ti = (double)t/100.0;

 ti = time(ti);

 if(ti<8) return 1;

 else return 0;

}

int w(int t)

{

 double ti = (double)t/100.0;

 ti = time(ti);

 if(ti<8) return 0;

 else return 1;

}

Team	#2017007	
	

26	

double f(double s,double swa,int t)

{

 return (-1)*gc*swa + rs*(su-s);

}

double g(double s,double swa,int t)

{

 return rc*swa*(1-(swa/s))*(s/su)-fcr*(swa-swal)*remt(t)-fcw*(swa-swal)*w(t);

}

void findsswa(int t)

{

 double k11,k12,k21,k22,k31,k32,k41,k42;

 k11 = f(S[t],SWA[t],t);

 k12 = g(S[t],SWA[t],t);

 k21 = f(S[t]+(k11*h*0.5),SWA[t]+(k12*h*0.5),t+(h*0.5));

 k22 = g(S[t]+(k11*h*0.5),SWA[t]+(k12*h*0.5),t+(h*0.5));

 k31 = f(S[t]+(k21*h*0.5),SWA[t]+(k22*h*0.5),t+(h*0.5));

 k32 = g(S[t]+(k21*h*0.5),SWA[t]+(k22*h*0.5),t+(h*0.5));

 k41 = f(S[t]+(k31*h),SWA[t]+(k32*h),t+(h));

 k42 = g(S[t]+(k31*h),SWA[t]+(k32*h),t+(h));

 S[t+1] = S[t] + (1.0/6.0)*(k11+2*k21+2*k31+k41);

 SWA[t+1] = SWA[t] + (1.0/6.0)*(k12+2*k22+2*k32+k42);

}

int main(void)

{

 fp1 = fopen("output.csv","w");

 int t;

 S[0] = 0.5563;

 SWA[0] = 0.083;

 for(t=0;t<=T*100;t++)

 {

 findsswa(t);

 }

Team	#2017007	
	

27	

 for(t=(T-240)*100;t<=T*100;t++)

 {

 fprintf(fp1,"%d,%lf\n",t,S[t]);

 }

 fclose(fp1);

}

C. Code for finding the appropriate coefficients of our model

#include<stdio.h>

#include<math.h>

#define pi 3.141592653

#define T (24.0*50)

#define dt 1

#define phi 0.0

FILE *fp1,*fp2;

double c3,c4,c5,c6,k,pc;

double sum;

double Piro[999999];

double Pref[10000];

void START(void)

{

 int i;

 for(i=0;i<=999990;i++)

 {

 Piro[i] = 0;

 }

}

double fp(double p)

{

 return 0.5-0.5*(tanh(k*(p-pc)));

}

double time(double t)

{

Team	#2017007	
	

28	

 while(t>24)

 {

 t-=24;

 }

 return t;

}

double rhythm(int t)

{

 double kk = 72/(72-phi);

 return sin(2*pi/(2400.0*kk)*(double)(t-600)+(2*pi/24)*phi);

}

double c1(int t)

{

 return (c3+c4)/2.0+(c4-c3)/2*tanh(3*rhythm(t));

}

double c2(int t)

{

 return (c5+c6)/2.0+(c6-c5)/2*tanh(3*rhythm(t));

}

double piroprime1(double p,int t)

{

 return c1(t)*fp(p);

}

double piroprime2(double p,int t)

{

 return -c2(t)*p;

}

void findpiro(int t)

{

 double k1,k2,k3,k4;

 double ti = (double)t/100.0;

 ti = time(ti);

 if(ti>8)

Team	#2017007	
	

29	

 {

 k1 = piroprime1(Piro[t],t);

 k2 = piroprime1(Piro[t]+0.5*dt*k1,t+0.5*dt);

 k3 = piroprime1(Piro[t]+0.5*dt*k2,t+0.5*dt);

 k4 = piroprime1(Piro[t]+dt*k3,t+dt);

 }

 else

 {

 k1 = piroprime2(Piro[t],t);

 k2 = piroprime2(Piro[t]+0.5*dt*k1,t+0.5*dt);

 k3 = piroprime2(Piro[t]+0.5*dt*k2,t+0.5*dt);

 k4 = piroprime2(Piro[t]+dt*k3,t+dt);

 }

 Piro[t+1] = Piro[t] + (1.0/6.0)*dt*(k1+2*k2+2*k3+k4);

 if(Piro[t+1]<=0)

 {

 Piro[t+1]=0;

 }

}

int main(void)

{

 fp1 = fopen("output.csv","w");

 fp2 = fopen("input.txt","r");

 int t;

 int i;

 for(i=0;i<=7200;i++)

 {

 fscanf(fp2,"%lf\n",&Pref[i]);

 }

 for(c3=0.00003;c3<=0.00005;c3+=0.00001)

 for(c4=0.0003;c4<=0.0005;c4+=0.0001)

 for(c5=0.0003;c5<=0.0005;c5+=0.0001)

 for(c6=0;c6<=0.000075;c6+=0.000025)

 for(k=3;k<=3.5;k+=0.5)

Team	#2017007	
	

30	

 for(pc=0.55;pc<=0.66;pc+=0.05)

 {

 sum = 0;

 START();

 printf("%lf %lf %lf %lf %lf %lf\n",c3,c4,c5,c6,k,pc);

 for(t=0;t<=T*100;t++)

 {

 findpiro(t);

 }

 for(i=0;i<=7200;i++)

 {

 sum+=pow(Pref[i]-Piro[(int)(T*100)-7200+i],2);

 }

 sum/=7200.0;

 fprintf(fp1,"%lf,%lf,%lf,%lf,%lf,%lf,,%lf\n",c3,c4,c5,c6,k,pc,sqrt(sum));

 }

 fclose(fp1);

}

D. Code for finding the appropriate meeting place – method 1

#include<stdio.h>

#include<math.h>

#define pi 3.141592653

#define T (24.0*51)

#define c3 0.00004

#define c4 0.0003

#define c5 0.0003

#define c6 0.00005

#define k 3.0

#define pc 0.6

#define dt 1

#define u 817.804247

#define Re 6371

#define Pf 0.672137

Team	#2017007	
	

31	

FILE *fp1, *fp2, *fp3, *fp4;

double Piro[999999];

double Pi[3000];

double thetai[20],thetaf[7000],phii[20],phif[7000];

double phi,FT;

int check[7000][15000];

int realcheck[7000][15000];

int cccheck[7000];

double rad(double x)

{

 return pi/180.0*x;

}

void IV(void)

{

 int i,a,b;

 for(i=0;i<=900000;i++)

 {

 Piro[i] = 0;

 }

}

void place(void)

{

 fp3 = fopen("place.txt","r");

 fp4 = fopen("airport.txt","r");

 int i;

 for(i=1;i<=11;i++)

 {

 fscanf(fp3,"%lf %lf",&thetai[i],&phii[i]);

 thetai[i] = rad(thetai[i]);

 phii[i] = rad(phii[i]);

 }

 /*

 for(i=1;i<=6977;i++)

Team	#2017007	
	

32	

 {

 fscanf(fp4,"%lf %lf",&thetaf[i],&phif[i]);

 thetaf[i] = rad(thetaf[i]);

 phif[i] = rad(phif[i]);

 }

 */

 double t1 = -78.89;

 double t2 = -81.11;

 double p1 = -55.56;

 double p2 = -60;

 t1 = rad(t1);

 t2 = rad(t2);

 p1 = rad(p1);

 p2 = rad(p2);

 thetaf[1] = -77.8740;

 phif[1] = -34.62616;

 thetaf[2] = -79.75;

 phif[2] = -83.30;

 thetaf[1] = (5*t1+1*t2)/6.0;

 phif[1] = (5*p1+1*p2)/6.0;

 thetaf[2] = (5*t1+1*t2)/6.0;

 phif[2] = (3*p1+3*p2)/6.0;

 thetaf[3] = (5*t1+1*t2)/6.0;

 phif[3] = (1*p1+5*p2)/6.0;

 thetaf[4] = (3*t1+3*t2)/6.0;

 phif[4] = (5*p1+1*p2)/6.0;

 thetaf[5] = (3*t1+3*t2)/6.0;

 phif[5] = (3*p1+3*p2)/6.0;

Team	#2017007	
	

33	

 thetaf[6] = (3*t1+3*t2)/6.0;

 phif[6] = (1*p1+5*p2)/6.0;

 thetaf[7] = (1*t1+5*t2)/6.0;

 phif[7] = (5*p1+1*p2)/6.0;

 thetaf[8] = (1*t1+5*t2)/6.0;

 phif[8] = (3*p1+3*p2)/6.0;

 thetaf[9] = (1*t1+5*t2)/6.0;

 phif[9] = (1*p1+5*p2)/6.0;

}

double fp(double p)

{

 return 0.5-0.5*(tanh(k*(p-pc)));

}

double time(double t)

{

 while(t>24)

 {

 t-=24;

 }

 return t;

}

void flighttime(int i,int j)

{

 double the = acos(cos(thetai[i])*cos(thetaf[j])*cos(phii[i]-phif[j]) + sin(thetai[i])

*sin(thetaf[j]));

 FT = Re*the/u;

}

double rhythm(int t)

{

 double ti = double(t)/100.0;

 if(ti<8.0)

 {

Team	#2017007	
	

34	

 return sin(2*pi/24.0*(ti-6.0-phi));

 }

 else if(ti<80.0)

 {

 return sin((2*pi/24.0)*((72.0+phi)/72.0)*(ti-6.0-(74.0*phi/(72.0+phi))));

 }

 else

 {

 return sin((2*pi/24.0)*(ti-6.0));

 }

}

double dphi(int a,int b)

{

 double delphi = phif[b]-phii[a]+pi;

 if(delphi<0) delphi+=(2*pi);

 if(delphi>2*pi) delphi-=(2*pi);

 return delphi-pi;

}

double c1(int t)

{

 return (c3+c4)/2.0+(c4-c3)/2*tanh(3*rhythm(t));

}

double c2(int t)

{

 return (c5+c6)/2.0+(c6-c5)/2*tanh(3*rhythm(t));

}

double piroprime1(double p,int t)

{

 return c1(t)*fp(p);

}

double piroprime2(double p,int t)

{

 return -c2(t)*p;

}

Team	#2017007	
	

35	

void findpiro(int t)

{

 t+=2400;

 double k1,k2,k3,k4;

 double ti = (double)t/100.0;

 ti = time(ti);

 if(ti>8)

 {

 k1 = piroprime1(Piro[t],t);

 k2 = piroprime1(Piro[t]+0.5*dt*k1,t+0.5*dt);

 k3 = piroprime1(Piro[t]+0.5*dt*k2,t+0.5*dt);

 k4 = piroprime1(Piro[t]+dt*k3,t+dt);

 }

 else

 {

 k1 = piroprime2(Piro[t],t);

 k2 = piroprime2(Piro[t]+0.5*dt*k1,t+0.5*dt);

 k3 = piroprime2(Piro[t]+0.5*dt*k2,t+0.5*dt);

 k4 = piroprime2(Piro[t]+dt*k3,t+dt);

 }

 Piro[t+1] = Piro[t] + (1.0/6.0)*dt*(k1+2*k2+2*k3+k4);

 if(Piro[t+1]<=0)

 {

 Piro[t+1]=0;

 }

}

void findpirofly(int t)

{

 t+=2400;

 double k1,k2,k3,k4;

 double ti = (double)t/100.0;

 ti = time(ti);

 k1 = piroprime2(Piro[t],t);

 k2 = piroprime2(Piro[t]+0.5*dt*k1,t+0.5*dt);

Team	#2017007	
	

36	

 k3 = piroprime2(Piro[t]+0.5*dt*k2,t+0.5*dt);

 k4 = piroprime2(Piro[t]+dt*k3,t+dt);

 Piro[t+1] = Piro[t] + (1.0/6.0)*dt*(k1+2*k2+2*k3+k4);

 if(Piro[t+1]<=0)

 {

 Piro[t+1]=0;

 }

}

void ccheck(int b,int t)

{

 t+=2400;

 double ti = (double)t/100.0;

 ti = time(ti);

 if(ti>8)

 {

 if(Piro[t]<0.672137)

 {

 //printf("a");

 check[b][t]++;

 }

 }

}

int main(void)

{

 fp1 = fopen("output.csv","w");

 fp2 = fopen("input.txt","r");

 int t;

 int i;

 int x;

 place();

 for(i=0;i<=2400;i++)

 {

 fscanf(fp2,"%lf\n",&Pi[i]);

 }

Team	#2017007	
	

37	

 int a=1,b=10;

 //for(b=1;b<=1;b++)

 {

 printf("b : %d\n",b);

 //for(a=5;a<=5;a++)

 {

 IV();

 //printf("a : %d b : %d\n",a,b);

 phi = (24.0/2/pi)*dphi(a,b);

 flighttime(a,b);

 //printf("phi : %lf T : %lf\n",phi,FT);

 if(FT<8)

 {

 x = int((8.0-FT)*100.0);

 //printf("%lf\n\n",Pi[x]);

 for(i=0;i<=4800;i++)

 Piro[i] = Pi[x];

 }

 else

 {

 x = int((32.0-FT)*100);

 //printf("%lf\n\n",Pi[x]);

 for(i=0;i<=4800;i++)

 Piro[i] = Pi[x];

 }

 for(t=0;t<=int(FT*100);t++)

 {

 findpirofly(int((8.0-FT)*100)+t);

 }

 for(t=(int((8.0-FT)*100)+int(FT*100));t<=8000;t++)

 {

 findpiro(t);

 }

 for(t=(int((8.0-FT)*100)+int(FT*100));t<=8000;t++)

 {

Team	#2017007	
	

38	

 ccheck(b,t);

 }

 }

 for(t=(int((8.0-FT)*100)+int(FT*100));t<=8000;t++)

 {

 int s=0;

 if(check[b][t+2400]>=8)

 {

 realcheck[b][t] = b;

 cccheck[b]++;

 }

 }

 }

 for(t=0;t<=10400;t++)

 {

 {

 fprintf(fp1,"%d,",cccheck[t]);

 }

 fprintf(fp1,"\n");

 }

 fclose(fp1);

}

E. Code for finding the appropriate meeting place – method 2

#include<stdio.h>

#include<math.h>

#define pi 3.141592653

#define T (24.0*51)

#define c3 0.00004

#define c4 0.0003

#define c5 0.0003

#define c6 0.00005

Team	#2017007	
	

39	

#define k 3.0

#define pc 0.6

#define dt 1

#define u 817.804247

#define Re 6371

#define Pf 0.672137

FILE *fp1, *fp2, *fp3, *fp4;

double Piro[999999];

double Pi[3000];

double thetai[20],thetaf[7000],phii[20],phif[7000];

double phi,FT;

int check[7000][15000];

int realcheck[7000][15000];

int cccheck[7000];

double rad(double x)

{

 return pi/180.0*x;

}

void IV(void)

{

 int i,a,b;

 for(i=0;i<=900000;i++)

 {

 Piro[i] = 0;

 }

}

void place(void)

{

 fp3 = fopen("place.txt","r");

 fp4 = fopen("airport.txt","r");

 int i;

 for(i=1;i<=11;i++)

 {

Team	#2017007	
	

40	

 fscanf(fp3,"%lf %lf",&thetai[i],&phii[i]);

 thetai[i] = rad(thetai[i]);

 phii[i] = rad(phii[i]);

 }

 for(i=1;i<=6977;i++)

 {

 fscanf(fp4,"%lf %lf",&thetaf[i],&phif[i]);

 thetaf[i] = rad(thetaf[i]);

 phif[i] = rad(phif[i]);

 }

 /*

 double t1 = -78.89;

 double t2 = -81.11;

 double p1 = -55.56;

 double p2 = -60;

 t1 = rad(t1);

 t2 = rad(t2);

 p1 = rad(p1);

 p2 = rad(p2);

 thetaf[1] = -77.8740;

 phif[1] = -34.62616;

 thetaf[2] = -79.75;

 phif[2] = -83.30;

 /*

 thetaf[1] = (5*t1+1*t2)/6.0;

 phif[1] = (5*p1+1*p2)/6.0;

 thetaf[2] = (5*t1+1*t2)/6.0;

 phif[2] = (3*p1+3*p2)/6.0;

 thetaf[3] = (5*t1+1*t2)/6.0;

 phif[3] = (1*p1+5*p2)/6.0;

Team	#2017007	
	

41	

 thetaf[4] = (3*t1+3*t2)/6.0;

 phif[4] = (5*p1+1*p2)/6.0;

 thetaf[5] = (3*t1+3*t2)/6.0;

 phif[5] = (3*p1+3*p2)/6.0;

 thetaf[6] = (3*t1+3*t2)/6.0;

 phif[6] = (1*p1+5*p2)/6.0;

 thetaf[7] = (1*t1+5*t2)/6.0;

 phif[7] = (5*p1+1*p2)/6.0;

 thetaf[8] = (1*t1+5*t2)/6.0;

 phif[8] = (3*p1+3*p2)/6.0;

 thetaf[9] = (1*t1+5*t2)/6.0;

 phif[9] = (1*p1+5*p2)/6.0;

 */

}

double fp(double p)

{

 return 0.5-0.5*(tanh(k*(p-pc)));

}

double time(double t)

{

 while(t>24)

 {

 t-=24;

 }

 return t;

}

void flighttime(int i,int j)

{

 double the = acos(cos(thetai[i])*cos(thetaf[j])*cos(phii[i]-phif[j])+sin(thetai[i]) *

sin(thetaf[j]));

Team	#2017007	
	

42	

 FT = Re*the/u;

}

double rhythm(int t)

{

 double ti = double(t)/100.0;

 if(ti<8.0)

 {

 return sin(2*pi/24.0*(ti-6.0-phi));

 }

 else if(ti<80.0)

 {

 return sin((2*pi/24.0)*((72.0+phi)/72.0)*(ti-6.0-(74.0*phi/(72.0+phi))));

 }

 else

 {

 return sin((2*pi/24.0)*(ti-6.0));

 }

}

double dphi(int a,int b)

{

 double delphi = phif[b]-phii[a]+pi;

 if(delphi<0) delphi+=(2*pi);

 if(delphi>2*pi) delphi-=(2*pi);

 return delphi-pi;

}

double c1(int t)

{

 return (c3+c4)/2.0+(c4-c3)/2*tanh(3*rhythm(t));

}

double c2(int t)

{

 return (c5+c6)/2.0+(c6-c5)/2*tanh(3*rhythm(t));

}

double piroprime1(double p,int t)

Team	#2017007	
	

43	

{

 return c1(t)*fp(p);

}

double piroprime2(double p,int t)

{

 return -c2(t)*p;

}

void findpiro(int t)

{

 t+=2400;

 double k1,k2,k3,k4;

 double ti = (double)t/100.0;

 ti = time(ti);

 if(ti>8)

 {

 k1 = piroprime1(Piro[t],t);

 k2 = piroprime1(Piro[t]+0.5*dt*k1,t+0.5*dt);

 k3 = piroprime1(Piro[t]+0.5*dt*k2,t+0.5*dt);

 k4 = piroprime1(Piro[t]+dt*k3,t+dt);

 }

 else

 {

 k1 = piroprime2(Piro[t],t);

 k2 = piroprime2(Piro[t]+0.5*dt*k1,t+0.5*dt);

 k3 = piroprime2(Piro[t]+0.5*dt*k2,t+0.5*dt);

 k4 = piroprime2(Piro[t]+dt*k3,t+dt);

 }

 Piro[t+1] = Piro[t] + (1.0/6.0)*dt*(k1+2*k2+2*k3+k4);

 if(Piro[t+1]<=0)

 {

 Piro[t+1]=0;

 }

}

void findpirofly(int t)

{

Team	#2017007	
	

44	

 t+=2400;

 double k1,k2,k3,k4;

 double ti = (double)t/100.0;

 ti = time(ti);

 k1 = piroprime2(Piro[t],t);

 k2 = piroprime2(Piro[t]+0.5*dt*k1,t+0.5*dt);

 k3 = piroprime2(Piro[t]+0.5*dt*k2,t+0.5*dt);

 k4 = piroprime2(Piro[t]+dt*k3,t+dt);

 Piro[t+1] = Piro[t] + (1.0/6.0)*dt*(k1+2*k2+2*k3+k4);

 if(Piro[t+1]<=0)

 {

 Piro[t+1]=0;

 }

}

void ccheck(int b,int t)

{

 t+=2400;

 double ti = (double)t/100.0;

 ti = time(ti);

 if(ti>8)

 {

 if(Piro[t]<0.672137)

 {

 //printf("a");

 check[b][t]++;

 }

 }

}

int main(void)

{

 fp1 = fopen("output.csv","w");

 fp2 = fopen("input.txt","r");

 int t;

Team	#2017007	
	

45	

 int i;

 int x;

 place();

 for(i=0;i<=2400;i++)

 {

 fscanf(fp2,"%lf\n",&Pi[i]);

 }

 int a=1,b=10;

 //for(b=1;b<=1;b++)

 {

 printf("b : %d\n",b);

 //for(a=5;a<=5;a++)

 {

 IV();

 //printf("a : %d b : %d\n",a,b);

 phi = (24.0/2/pi)*dphi(a,b);

 flighttime(a,b);

 //printf("phi : %lf T : %lf\n",phi,FT);

 if(FT<8)

 {

 x = int((8.0-FT)*100.0);

 //printf("%lf\n\n",Pi[x]);

 for(i=0;i<=4800;i++)

 Piro[i] = Pi[x];

 }

 else

 {

 x = int((32.0-FT)*100);

 //printf("%lf\n\n",Pi[x]);

 for(i=0;i<=4800;i++)

 Piro[i] = Pi[x];

 }

 for(t=0;t<=int(FT*100);t++)

 {

 findpirofly(int((8.0-FT)*100)+t);

Team	#2017007	
	

46	

 }

 for(t=(int((8.0-FT)*100)+int(FT*100));t<=8000;t++)

 {

 findpiro(t);

 }

 for(t=(int((8.0-FT)*100)+int(FT*100));t<=8000;t++)

 {

 ccheck(b,t);

 }

 /*

 for(t=(int((8.0-FT)*100)+int(FT*100));t<=8000;t++)

 {

 fprintf(fp1,"%d\n",check[b][t+2400]);

 }

 */

 }

 for(t=(int((8.0-FT)*100)+int(FT*100));t<=8000;t++)

 {

 int s=0;

 if(check[b][t+2400]>=8)

 {

 realcheck[b][t] = b;

 cccheck[b]++;

 }

 }

 }

/*

 for(b=1;b<=6977;b++)

 {

 fprintf(fp1,"%d\n",cccheck[b]);

 }

*/

Team	#2017007	
	

47	

 for(t=0;t<=10400;t++)

 {

 //for(b=1;b<=10;b++)

 {

 fprintf(fp1,"%lf,",Piro[t]);

 }

 fprintf(fp1,"\n");

 }

 fclose(fp1);

}

XI References
[1] Borb, A. A., & Achermann, P. (1999). Sleep homeostasis and models of sleep re

gulation. Journal of biological rhythms, 14(6), 559-570.

