
Setting a new world record is an exceptional feat that often results in a monetary reward for the athlete
who sets it. Thus, race organizers must ensure that they have the ability to pay out the bonus if the time comes
to do so. Typically, organizers will have two choices: purchase prize indemnity insurance that protects them
against the need to pay, or self-insure, paying out the entire prize when someone breaks the world record.

The goal of our paper is to produce a model that determines whether or not an event organizer should
buy insurance for a given event. We consider multiple criteria, including the organizers’ budget, the average cost
of the bonus (as defined in the problem), the probability a world record is broken, and the number of races to
be held, among other factors, to make recommendations about insurance by mathematically modeling the
organization’s financial exposure under each scenario (purchasing insurance or not).

We considered what we quantitatively defined as the financial risk to the organizing committee, rather
than long-term cash flow, to account for the fact that while buying insurance ensures a financial loss in the long
run, it is better to consistently endure a small financial loss than risk facing the prospect of an athlete winning a
prize the race organizers cannot pay. After developing equations that quantify financial exposure, we plugged in
known values for the criteria listed in the above paragraph, and used three-dimensional graphs to quantify the
benefit (or harm) of buying insurance in terms of the financial exposure to the organizers. We then created a
computer program based on our model that would allow the event organizers to enter the relevant information
and obtain a recommendation on whether or not to purchase insurance. Since financial risk is a function of a
number of different variables, we can partially differentiate the risk function with respect to each of the
variables to determine the effect of a change in each variable on the financial risk to the organization, and
therefore, the weight each variable ought to be given in the organizing committee’s decision-making process.

In the real world, there are generally more options than simply insuring against the full cost of the
bonus or not insuring at all. Many insurance contracts include provisions for a deductible -- a portion of the
payout that the organizers must pay before the insurance covers the rest -- which reduces the cost of the
insurance premium but means that the insurance provides less protection to the organizing committee. We thus
created new financial exposure expressions that describe financial exposure as a function of the deductible
amount. We may use these expressions to suggest to the organizers whether they should purchase full
insurance, buy insurance associated with a certain deductible value, or self-insure.

We created user-friendly software that returns the results of our model based on the user’s inputs, and
we generated an overall decision-making scheme that suggests precisely which events to insure based on the
events’ individual needs for insurance and on the organization’s ability to afford the premiums. We wrap all of
our models together into a final piece of software available to the race organizers that returns an insurance
recommendation for each of the 40 events by automating the decision-making process.

Another important consideration of our model is its sensitivity to the input variables. A detailed
sensitivity analysis is necessary for us to predict changes in the outputs of our model based on changes in the
inputs. Our approach to sensitivity analysis includes both local and global methods to give us the most accurate
prediction of the effects of all sizes of variability on the input variables. The results of our sensitivity analysis
are consistent with the results returned by our software and research we find in the literature, and they also
assure us that our model is not very sensitive to these input changes, functioning well over a wide array of
conditions.

Our model can quickly, easily, and reliably determine the most cost-effective way to insure a
competition, with specific recommendations for each event, based on input variables easily accessible to the
user. When an insurance policy with a deductible seems appropriate, we can recommend that as well, even

Team Control #
 2016021

2016021
Page 1/20

offering a recommended optimal deductible level. We are confident that our model could be immediately
deployed in the real world to produce actionable, valuable results for the organizers of any competition.

From Track to Plaque: Prize Indemnification Insurance for Track and Field

Events Team 2016021
Introduction

Breaking a world record is an extraordinary feat. Thus, monetary bonuses are often awarded for
pushing the limits of human capability. In this problem, we analyze the prospect of purchasing prize
indemnification insurance to protect race organizers against the need to pay large bonuses. We examine two
scenarios:

1. Should the organizers of the Zevenheuvelenloop, an annual 15k race, purchase prize indemnity
insurance to protect them against the need to pay out the €25000 bonus prize to record-breakers?

2. Which events, if any, should the organizers of a 40-event track and field meet consider insuring?
The question asks us to develop models for a number of different factors that fall into one of these two
scenarios. Our model approaches this problem from two perspectives: from that of the insurance companies
and from that of the event organizers. We first create expressions for the premium charged by the insurance
company by considering its operating costs and profit (as well as the average cost of the bonus, which it must
recover in the premium). We then quantify the financial exposure taken on by the organization when buying
insurance or self-insuring and compare the financial exposures to suggest a course of action to the organizers.

While the problem asked us to consider two options, to buy insurance or to self-insure, those options
are often not the only ones available in the real world. Many insurance plans offer a deductible policy that may
offer lower financial risk as compared to both a full insurance policy and self-insurance. Thus, we create a
separate expression for the financial risk when selecting such an insurance policy. We standardize the financial
exposure of an insurance policy with a deductible against that of one without and then suggest a course of
action for organizers: buy insurance, buy insurance with a deductible policy, or self-insure.

Ultimately, the strength of our model is its ability to take real-world constraints into account. While
purchasing insurance will always result in long-run financial loss, most people would prefer a definite, small
financial loss to the risk of losing a large sum of money. By quantifying financial “risk” (financial exposure) to
determine whether or not to purchase insurance, we can compare the financial exposure entailed in different
insurance options and make optimal recommendations to the event organizers. Also, our user-friendly software
programs allow for instant, easy use, which greatly augment the real-world applicability of our model.

Variables
a = average cost of the bonus, as defined in the problem statement
b = amount of bonus paid to record-breakers (the value of the prize)
c = total number of times a race is run on average before someone wins (inclusive)
d = operating costs of the insurance company as a fraction of income
e = insurance premium paid by the race organizers to the insurance company
m = additional cost the insurance company adds to the average cost (a) to cover their operating costs and
realize a profit (m + a = e, equation 3)
o = operating costs for the insurance company per insurance contract
p PV = profit margin (present value)
p FV = profit margin (future value)
q = the probability of breaking the record (q =); (q = in Part 1 to use standard confidence intervalc

1 p̂
notation)
rd = financial exposure for the race organizers if they purchase insurance with a deductible provision
ri = financial exposure for the race organizers with deductible-free insurance
r n = financial exposure for the race organizers without insurance
t = number of times the race is held (and thus the number of times the premium is paid; see Assumption 3)
s = total expenditures by the race organizer excluding the actual payment of the bonus or the insurance
premium
u = amount of deductible in insurance policies with deductibles
β = organizing committee’s budget for the race event

= insurance company’s addition to the premium as a fraction of the average cost of the bonusα α)(= a
m

γ = constant for the case where r i = r n , derivation on page 7γ)(= ab
m(s+a)

2016021
Page 2/20

= constant for the case where r i = r d (), derivation on page 10δ δ = a (b−u)*
(a+m) (s+q u)* *

Assumptions

1. Taken over all events, athletes will continue to break world records at a rate similar to that in the recent
past. Justification : Although this may seem counterintuitive since people may expect athletes to
approach the limit of human potential, data reveal that the 21st century has pushed many limits further.
Better training and technology, as well as more opportunities for traditionally underrepresented
athletes, have kept the record-breaking rate relatively constant.[13]

2. Insurance companies’ operating costs to income ratio (d) is fairly constant across each continent.
Justification: If we treat the top 60 multinational insurance companies as a sample of the insurance
companies we are considering, the standard deviation of the sample of combined ratios (the quotient of
incurred losses and expenses over earned premium) is 11.4049. The standard deviation of the sampling
distribution of the mean combined ratio (also known as the standard error, SE) is defined as ,E S = s√n
where s = standard deviation of the sample, and n = size of the sample. Therefore, the standard error is

1.43%, meaning that the ratio of expenses to earnings is quite constant across the board. √60
11.049 =
Although the combined ratio has a very low variability for multinational insurance companies, we also
need to take into account the local insurance companies. To generate a more realistic approximation of
the ratio of expenses to earnings, we use representative insurances companies for each continent.

3. Race organizers pay the insurer a set premium per race rather than per time interval. Justification: Many
insurance policies do involve premiums paid over time because the risk to the insurer is proportional to
time (e.g. health insurers bear more risk of illness over longer periods of time). But for prize
indemnification insurance, the insurer bears zero risk except in the case of a race, where a prize might
need to be paid out.

4. Both the race organizers and insurance company will do what is best for them financially (for the
organizers, this may mean buying insurance to reduce financial risk). Justification: The framing of this
problem does not suggest any motivation for the two entities beyond financial considerations.

5. The profit margin for insurance brokerages averages 10.2%. Justification: According to Yahoo!
Finance, the average profit margin in the insurance industry is 10.2%.[20]

6. For scenarios in “the near future,” the time value of money is irrelevant. Justification: The time value
of money is only consequential over long periods of time. If the “near future” describes a period of
fewer than five years, for example, a 0.2% interest rate means €1 today is worth €1.01 five years from
now. Such gains are trivial, and we thus consider the time value of money only over longer periods of
time.

Part 1: Calculating Average Cost

We approach part one in two ways: reporting a through direct computation and with confidence
intervals. First, we compute average cost using the formula provided:

 qa = * b = c
b (1)

We can compute this for the Zevenheuvelenloop in three ways: for men, for women, and combined.
For men: €1562.50/raceamen = €25000/record

32 races/2 records = €25000/record16 races/record =
For women: 781.25/racea women = €25000 /record

32 races/1 record =
€25000 /record
32 races/record = €

Combined: 1171.875/race a combined = €25000 /record
64 races/3 records =

€25000 /record
21.3 races/record = €

Since the issue of payment is important to the organizers of the Zevenheuvelenloop regardless of the gender of
the winner, the combined value is the most important for them to consider.

Assumption 1 allows us to perform inference to predict future costs. We can treat past races as a
sample of all of the instances of the Zevenheuvelenloop and then create an approximate confidence interval for
the proportion p ̂ of races in which records are broken using the one-proportion z-statistic. (The interval is only
approximate because we cannot be assured of the Normality of the sampling distribution of p ̂ when our data
only includes three successes. We simply proceed with caution.) We use the confidence interval formula:

2016021
Page 3/20

 with p̂ ± z*√ n
p(1−p) ˆ ˆ 0469, z 1.645, n 4p̂ = 364 ≈ . * = = 6 (2)

(Note: The z* value is the x-value in the standard Normal distribution, where the area under the distribution to
the right of x is .05. Because there is a corresponding value to the left of zero, we have a 90% confidence
interval, with 95% confidence on the upper and lower limits.)
We obtain:

0469 1.645 .34%, 9.03%) . ± √ 64
.0469 × (1−.0469) ⇒ (

We now plug these values of p ̂ (note that) into our equation for a . Then we are 95% confident the lower p̂ = c
1

limit of cost lies above .0034 x €25000 = €85 per race and that the upper limit of cost lies below .0903 x €25000
= €2257.50 per race.
Therefore, our complete answer to question 1 is:

● The average cost of the bonus for men, in the past , was €1562.50.
● The average cost of the bonus for women, in the past, was €781.25.
● The average cost of all bonuses using the combined probability, in the past, was €1171.88. We will use

this value going forward, since it is the most relevant to the contest organizers.
● We estimate with 90% confidence that the average combined bonus cost, in the future, will lie between

€85 and €2257.50.

Part 2: Criteria for Insurance Companies in Pricing Determinations
Much of the remainder of this paper concerns the construction of mathematical models surrounding

various types and amounts of insurance. For such models, it is important to have an end goal or objective
function: the criterion by which we measure our outcomes. Assumption 4 established that all actors in this
problem will make decisions on a purely financial basis, so we will judge decisions by the extent to which they result
in a) positive financial outcomes, or b) reductions in the count or severity of negative financial outcomes , where risk (quantified as
financial exposure) counts as a financial outcome and its reduction is financially beneficial.

Revenue for the insurance company comes from a premium paid by the race organizers, with one
premium paid per race (Assumption 3). We now describe the components of the insurance premium from the
insurer’s perspective:

● Average cost: The company must recoup the average cost with each premium so that, over the long
run, it does not lose money paying out the prizes.

● Time value of money: This helps the insurer, because insurance premiums received today will be worth
more tomorrow due to the accumulation of interest (at a rate of 0.2% in the Netherlands)[19].

● Operating expenditures: The insurance company requires basic necessities (i.e., utilities) and paid
employees, which cost money that must be recovered through the insurance premium.

● Profit: The insurance company needs to make a profit to justify its existence.
In future calculations, we will need to separate out the average cost (a) component of the insurance

premium from the other components -- essentially, profit and overhead. We therefore define the insurance
premium e to be the sum of the average cost a and the other associated costs (profit and operating costs) m:

e = a +m (3)

We start by examining six different criteria for insurance companies in pricing determinations:
1. Operating costs
2. Profit margin
3. Time value of money
4. Ability of participants in the race (which affects the likelihood q of a payout, therefore affecting a)
5. Number of participants in the race (which also affects q , and therefore, a)
6. Value of the prize money (which affects b , and therefore a)

Since the average cost of the bonus accounts for criteria 4-6 and is already included in the insurance premium,
we primarily analyze the effects of operating costs, profit margin, and time value of money in determining the
additional cost m the insurance company should include in the premium above and beyond the average cost a .

Operating Costs

2016021
Page 4/20

Based on Assumption 2, we used data from an insurance agency with operations in the Netherlands,
Ageas, to calculate European insurance companies’ average operating costs per euro earned as income.
According to its 2013 financial report[1], Ageas spent €13.017 billion in that year. Out of those expenses, we
subtracted expenses used for and related to the payment of insurance claims and benefits (€10.8324 billion).
When each organization/race pays its own average cost in the insurance premium, that money covers the
insurer’s cost of paying for insurance claims. Therefore, we find that the other expenses (which must be paid
for with income from m) total €2.1846 billion. The report also stated that Ageas earned €14.01 billion in
revenue. To calculate the average operating cost of the insurance company per euro it earns as income from
premiums, we divided the total non-insurance/claim-based operating costs by the total income:

.1559d = €14.01 billion
€2.1846 billion = 0

From this value, we can determine the amount of money needed to cover the operating costs per contract. In
this part, we were asked to consider the criteria for the Zevenheuvelenloop. Recall that we found in equation 3

that
e = a + m = €1171.88 + m

We calculated in Part 1 that a = €1171.88. If we multiply the value of the insurance premium e by the operating
costs per euro of insurance premiums paid to the insurance company, we can calculate the share of its operating
costs the insurance company should cover from this event’s premium:

 (1171.88) 0.1559) (1171.88) 82.73 .1559 mo = d × e = d +m = (+m = 1 + 0 (4)

Profit
The profit margin from the premium can be found by subtracting the operational costs (o) we found in

equation (4) and the average cost of the bonus (a) from the total insurance premium (e), leaving the component
of the premium that the insurer takes home as profit:

p PV 182.73 .1559 m) .8441 m 82.73= e − a − o = m − o = m − (+ 0 = 0 − 1 (5)

However, this equation only describes the present value of the profit. Considerations of the time value of
money are financially important to the insurance company and will be discussed in the following section.

Time Value of Money (TVM)
The time value of money is an important criterion to consider because of money’s potential earning

capacity. If the insurance company holds one euro today, that euro, if kept in the bank and allowed to
accumulate interest, will become more valuable in a few years. This can be modeled through the TVM equation:

V PV (1)F = + r n
where PV = present value FV = future value r = interest rate

 n = number of times the interest rate is compounded

(6)

Because of the time value of money, the insurance company would rather earn money now and pay money
later.

To find the future value of the profit, we apply the TVM (equation 6) to the p PV from equation 5. We
use the Netherlands’ real interest rate (meaning that the rate is adjusted for inflation) of 0.2%. [19] We compute
the future value in ten years, a reasonable period of time that we choose since the problem did not specify a
specific time period. Our future value of profit is:

p FV 0.8441 m 82.73)(1.002) .8611 m 86.42= (− 1 10 = 0 − 1 (7)

Weighing the Criteria

We can express m in terms of the operating costs and profit. To do so, we rearrange equation (4):

.4144 o 171.88m = 6 − 1 (8)

We then rearrange the equation for the future value of profit (equation 7) to obtain:

.1613 p 16.491m = 1 FV + 2 (9)

We now graph these two functions:

2016021
Page 5/20

Figure 1. Graphs of additional cost m versus operating costs (o) and future value profit (p FV) imposed by insurer
on top of average cost of bonus

These graphs provide information about how changes in operating cost and desired profit affect the amount of
the insurance premium the company charges. Specifically, the slope of operating costs graph indicates that if
operating costs increase by €1, the insurance company must increase m by €6.4144, accounting for the operating
cost to premium income ratio (). Similarly, the slope of the profit graph shows that if the.41441

.1559 = 6
insurance company desires to increase the future value of its profit by €1, m must increase by €1.1613. This
shows that the greater the value of the slope, the larger the effect the variable in question will have on the cost
of the premium.

To quantify the weight of operating costs versus profit, we examine the relative weights of the slopes:
wo = = 84.6654% w p = = 15.3346%6.4144

6.4144+1.1613
1.1613

6.4144+1.1613

Put more simply, changes in operating costs contribute to 84.7% of changes in premium costs, while changes in
the profit desired contribute 15.3%. Therefore, it follows that we give operating costs a weight of 84.7% in the
decision making process while we give profit a weight of 15.3%. We will apply this type of analysis later on
when we discuss weights in greater detail in our response to question four. This conclusion is reasonable since
operating costs are relatively fixed, while profit varies based on revenue. As variability increases, the effect on
premium costs decreases, since it is not as critical to recover the cost in question from the premium; it is more
important to the insurer to cover operating costs and avoid potential losses than to add additional profit.

Example Case
We were asked to consider the case where the insurer adds 20% to the average cost of bonus so that

the premium covers his operating costs and provides a profit over a period of time as affected by the TVM.
First, we find 20% of the average cost of the bonus, or, by our definition, m, the amount added to the

premium beyond the average cost of the bonus:
m = €1171.88 * .2 = €234.38

Then, we find the operating costs using equation 4:
o = €182.73 + .1559 * m = €182.73 + .1559 * €234.38 = €219.27

Finally, we find both the present value and the future value of the profit using equations 5 and 7:
p PV = .8441 * €234.38 - €182.73 = €15.11
pFV = .8611 * €234.38 - €186.42 = €15.40

We find that the insurer would use a 20% increase in premium costs above the a -value to earn €219.27 to cover
operating costs and to earn €15.40 in future value of profit as computed 10 years from today.

Part 3: Criteria for the Organizing Committee to Purchase Insurance
Insurance, in nearly all cases, is a for-profit business. Prize indemnification insurance firms in particular

therefore exist only for the prospect of profits. Over the long run, and over a large pool of insured entities, the
insurance company nets a profit, and those who are insured lose money. Then why would anyone buy
insurance? The answer is that insurance limits risk by distributing it among all the people and organizations
insured. People who see enormous, but unlikely, negative financial outcomes without insurance (such as
needing to pay out a prize to a runner) benefit the most from insurance, and insurers suffer a loss from this

2016021
Page 6/20

small subset of customers. For the majority of customers who never experience this type of loss, the insurance
is a drain on their financial assets. In other words, people buy insurance because they would rather be
guaranteed a small negative financial outcome than take the risk of sustaining a large negative one.

Therefore, if we were to consider this problem solely by net expenditures by the organizing committee,
our model would always recommend that the organizers self-insure because it is the only way to reduce
long-term expected cost. The organizers, however, face the risk of being unable to pay out the full prize value.
For each event, the prize payment may lie somewhere between “impossible to pay out without going bankrupt”
and “not a significant financial burden on the race organizers.” We need to know where to draw the line
between an affordable payout from an impossible one, and quantify the risk on a payment in between. Thus, we
create a way of quantifying the financial exposure of purchasing insurance and self-insurance: we assign a
financial value to the risk the organizers would take on by not purchasing insurance.

We define r i and r n as the financial exposure if the organizer buys insurance and if the organizer
self-insures, respectively. The financial exposure describes the amount of money the organizer expects to pay
scaled with the prospect of a high payout and the ability of the organizer to afford such a payout. It serves as a
metric that can compare the risks of buying insurance and self-insuring on the same scale. Thus, when the
financial exposure of purchasing insurance is less than the financial exposure of self-insurance (r i < r n), the
organizers should purchase insurance. If the financial exposure of purchasing insurance is greater than
self-insurance (r i > r n), then the organizer should self-insure.

We base our calculation of financial exposure on four criteria:
1. Prize money
2. Probability of breaking the world record
3. Budget and spending for the race (in this specific example/part, the Zevenheuvelenloop)
4. Number of races held (and thus, opportunities for the record to be broken)

The first two criteria, prize money and the probability of breaking the world record, are known for the
Zevenheuvelenloop and absorbed into the calculation for the average cost, which we incorporate into the
expression for financial exposure. Ultimately, our values describing financial exposure change depending on the
budget and the number of races held (average cost has no effect because it is a constant and cancels for relative
risk calculations), which will determine whether or not to buy insurance.

Financial Exposure When Purchasing Insurance
If the organizers purchase insurance, they will never be liable for a prize payout. Therefore, their

financial exposure is limited to the price of the insurance premium. Calculating the financial exposure over a
number of races t, we obtain:

 t a)ri = t * e = * (+m (10)

If we let = , then we can rewrite financial exposure as:α a
m

a 1)ri = * t * (+ α (11)

The value of can be calculated based on the desired profit margin set by the insurance company (seeα
equation 5 to determine the appropriate m -value and then divide it by a since =). It is the percentage of theα a

m
average cost that the insurance company adds on to cover operating cost and realize a profit. We will use inα
the calculations below.

Financial Exposure When Self-insuring

To calculate the financial exposure associated with self insurance, we created a scaled numerical value
that represents how much money the organizers would need to save per race to ensure that they would have
enough money to pay out the bonus prize when the record is broken. We introduce the variable k as a scaling
factor that takes into account the fact that people would rather be guaranteed a small financial loss than risk
losing a large amount of money. Thus, the financial exposure of self-insurance is:

 a 1)rn = * t * (+ k (12)

We know that in order for the organizers to accumulate enough money to pay the bonus over the long
run, they must save at least a euros per race (of course, this does not hold true in the short run, where a world
record, however unlikely, might be broken on the second race). We artificially increase the amount of financial

2016021
Page 7/20

exposure by adding a factor of k * a * t . Mathematically, we define k as some constant γ multiplied by the
proportion of the race budget the prize money occupied by the prize money:

k = γ * β
b (13)

To standardize k, we find a scenario in which the two financial exposure values would equal: when it would not
be more risky to choose one course of action over the other:

ri = r n
1) a 1)a * t * (+ α = * t * (+ k

 α = k
k = γ * β

b

a
m = γ * β

b
Because we set the two risks equal, the organization is saving just enough to pay the prize itself, and so the
budget β should equal s + a . This is because we assume that if the race organizer saves the average cost of
bonus for each race as part of their budget, they will, over the long run, have the capacity to pay the prize
money in full when a world record is broken. Therefore, there would not be much of a difference in financial
exposure for the organizer whether or not they buy insurance because the risk of the potential inability of them
to pay the full prize money in the short run (from not saving enough in a small number of races) is balanced by
the drawback of paying the additional cost m charged by the insurance company in the insurance premium
when no one breaks a world record. We can now find γ in terms of the constants m, a , s, and b :

a
m = γ * b

s+a

γ = ab
m(s+a) (14)

Thus, we can use equation 12 to write the financial exposure of self-insurance as:

, where γ is the constant we found above for the case r i = r n1)rn = a * t * (+ γ * β
b (15)

Given these two expressions for financial exposure, we can use them to suggest that the race organizer
purchase insurance when r i < r n and not purchase insurance when r i > r n . (If the organizers cannot afford the
insurance premium, r i is always greater than r n .)

Zevenheuvelenloop
In the case of the Zevenheuvelenloop, we set numerical values for some of the variables defined above.
From Assumption 5, the profit margin the average insurance company hopes to earn is 10.2% of their

total premium income (since the premium is the insurance company’s only source of revenue). Using the
present value profit formula (equation 5), we can calculate the amount the company must add to the average
cost of the bonus to determine the total cost of the premium:

pPV .102(e) .102(a) .102(1171.88)= 0 = 0 +m = 0 +m
(right side from equation 5).102(1171.88) .8441m 82.700 +m = 0 − 1

407.27m = €
We can calculate the value of α by dividing the value of m by the average cost:

.35α = a
m = €407.27

€1171.88 = 0 (16)

The value of α can be used to calculate the financial exposure entailed by purchasing insurance (equation 11):
ri 171.88 (1 .35) 582.038= 1 * t + 0 = 1 * t

To find the financial exposure of self-insurance, we need to calculate the value of γ using equation 14. From
the problem, we are given that the prize money, b , for the Zevenheuvelenloop is equal to €25000, and we found
a to be €1171.81 in Part 1. From the Zevenheuvelenloop records[11], we know that the amount the organizing
committee spent on the 2008 race, s, was €338000. We use all these values to find γ:

=γ = ab
m(s+a)

(€1171.81)(€25000)
€407.27(€338000+€1171.81)

.7484γ = 4
We can write the financial exposure of self-insuring (using equation 12) as:

 171.88 1 .7484) 171.88 t ()rn = 1 * t * (+ 4 * β
25000 = 1 * * β

β+118710.158 (17)

2016021
Page 8/20

We now analyze the results graphically. Specifically, we graph the difference between the financial exposure
when self-insuring and the financial exposure when purchasing insurance (r n - r i) to examine how budget and
the number of times a race is hosted affect whether or not our model suggests that the Zevenheuvelenloop
organizers should purchase insurance. The individual graphs for r n and r i on their own can be found in the
Appendix.

Figure 2. 3-D surface graph of r n - r i versus budget and the number of Zevenheuvelenloop races held

This graph shows that as the budget and the number of times the race is hosted increases, it becomes less
worthwhile to purchase insurance. This is reasonable, since as the budget for the race increases, the organizers
have more money and are more likely to be able to pay the prize money, meaning paying for insurance they do
not need becomes unnecessary. Furthermore, as the number of times the race is hosted increases, the
organizers accumulate more money from the participation fee, giving them an excess reserve from which to pay
out the bonus. However, the budget has a far more significant effect on determining whether or not to
purchase insurance.

Although the graph provides an overall visual representation of the results of our model, we wish to
express these results in a more precise and quantitative fashion. The next section concerns the development of
a computer program to do so.

Objective-C User-Facing Program #1: Relative Risks Calculator

Although we devote much of this paper to the development of equations and formulas that can
mathematically model the scenario we have been given, we must also keep in mind that our model is designed
for a real-world race-organizing committee for practical application. We would also like a way to rapidly verify
the results of some of our models in a precise and quantitative fashion. To these ends, we develop software that
automates computation using our models.

We develop three programs in this paper, and address the first one here. We title this program “Prize
Indemnification Insurance Risk Calculator.” A screenshot of sample output is included below, and the full
source code (written in Objective-C, as with all the user-facing programs included in this paper) may be found
in the Appendix starting on page 32. The program takes six inputs, which, in variable form, are b , q , t, e, s, and

. Using the methods described above, the code captures the user’s input, converts it into numerical values,β
calculates a = qb , calculates m = e - a , calculates , and then calculates the two risk values:γ = ab

m(s+a)
; . It then computes the difference between the two risks, divides by the a (1 ())rn = * t + γ β

b (1)ri = a * t + a
m

risk with insurance, and reports a percentage risk difference equal to . This difference is positive00%ri
r −rn i * 1

when self-insurance is more risky, and it is negative when buying insurance is more risky.

2016021
Page 9/20

In our example screenshot, below, we run the numbers for the Zevenheuvelenloop through the
software. The prize is €25,000; the odds of breaking the world record (from Part 1) are ; we .0468753

64 =
assume they will hold five competitions in the future; we use equation 16 to write that and 1.3475e = * a
obtain an insurance premium of €1579.10; we use the €338,000 spending figure [11]; and finally, we set the total
budget as 30,000*€19.50 = €585,000, an approximation of the budget using €19.50 entry prices for 30,000
runners.[21] Our software affirms the decision of the organizers of the Zevenheuvelenloop to self-insure: as a
result of the wide gap between their budget and their spending, they can easily afford to pay any
record-breakers without insurance. Since insurance is more expensive in the long run, and the organizers can
easily pay for the prize using existing funds, the software suggests not buying insurance, resulting in a predicted
net financial exposure difference of -10.84%.

Figure 3. The risk calculator we have built uses our model to make recommendations for the
Zevenheuvelenloop.

Deductibles
Up to this point, we have been assuming that the race organizers pay a certain premium to the

insurance company, and the insurance company indemnifies them against the entire cost of the payout. But this
is often not the case in the real world. Many insurance plans lower premiums by including so-called
“deductibles” as part of the insurance contract. An example of an insurance plan with a deductible is shown
below:

Figure 4. A hypothetical scenario in which the insurance company charges a premium equal to 10% of the
amount it covers, showing that higher deductibles reduce premium costs.

With an insurance contract that includes deductibles, the organizing committee is liable for the payout
costs up to a certain extent, and the insurance company is liable for all costs beyond the value of the deductible.

2016021
Page 10/20

The purchaser of the insurance would therefore opt to insure him/herself against part of the risk and sign an
insurance contract with a lower premium, but agree to pay a deductible before the insurance steps in.

In order to quantify the financial exposure involved when buying insurance with deductibles, we need
to generate an equation that quantifies financial exposure based on the amount of the deductible. We first
calculate the expected insurance premium for an insurance policy with deductibles (using equation 11):

b) 1)ed = (− u * q * t * (+ a
m (18)

where b - u replaces b in equation 11/15 since a deductible effectively means that the insurance covers a lower
amount. Then, we need to also factor in the additional financial exposure caused by the possibility of paying the
full amount of the deductible when a world record is broken. Essentially, we add the premium component of
equation 11 to the payout component of equation 15, modified to reflect deductibles (see Figure 5 below).

Figure 5. Deriving equation 19 from equations 11 and 15 but using deductibles rather than total payouts

We define a constant in the same way we previously defined in our equation for r n , whichδ γ
quantified the payout amount without insurance. Under an insurance plan with deductibles, that payout amount
is now u rather than b , so becomes . Our financial exposure expression becomes:γβ

b δβ
u

b) 1)rd = (− u * q * t * (+ a
m + δ * β

u (19)

with the new factor to include the possibility of financial exposure from paying the deductible in the caseδβ
u

when the world record is broken. To standardize our r d equation, we equate it with r i in the situation where
because is the new average value the race organizer expects to pay if a world record is brokenβ = s + u * q u * q

(previously, when we derived an expression for , we used , but the average cost of theγ qβ = s + a = s + b
payout is now uq rather than bq). Solving for (we omit t because it cancels on both sides):δ

(left side from equation 11; right from equation 19)1) b) 1) b * q * (+ a
m = (− u * q * (+ a

m + δ u*
s+u q*

δ = a (b−u)*
(a+m) (s+q u)* * (20)

After plugging our expression for back into equation 19, we have:δ

b) 1)rd = (− u * q * t * (+ a
m + a (b−u)*

(a+m) (s+q u)* * * β
u (21)

Because all of the variables other than u (b, q, t, m, a, s, and) are known constants for each event/insuranceβ
policy, we are able to plot financial exposure in terms of the amount of the deductible. Note that a is no longer
b * q but rather (b - u) * q because the average cost of the bonus that the insurer has to pay is no longer the
entirety of the prize money but the prize money minus the amount of the deductible, which will be paid for by
the organizers if the world record is broken.

To make this model more user-friendly (the race organizer likely does not have information about the
cost of the premium), we found m in terms of all of the other known variables, assuming a 10.2% profit margin
for the insurance company (Assumption 5) and an operating cost to income ratio d depending on the continent
of the insurer (Assumption 2):

*See derivation on Appendix pg. 80m = .898−d
(.102+d) (b q−q u)* * * (22)

Using constants from the Zevenheuvelenloop as a test case, we tested equation 21 with three different
values to reveal the three possible scenarios:β

2016021
Page 11/20

Figure 6. Test cases for financial exposure using the deductible model (x = deductible; y = financial exposure)

The graphs illustrate the the relationship between financial exposure and the deductible amount. The risk
function asymptotically approaches b , the total cost of the payout. If the race organizers are paying for all of b ,
they are essentially self-insuring. As the deductible amount approaches b , however, the relative financial
exposure exponentially increases because purchasing insurance, even with a large deductible, will still entail an
additional cost added to the average cost of bonus so the insurer can make a profit. Thus, when approaching b ,
it becomes more advantageous to self-insure.

In the first graph, the organizers have a relatively small budget of €150000. We examine the behavior of
the financial exposure function in the interval from u = 0 to u = b . Analysis is only necessary across this interval
because if the deductible is equal to the payout, the organizers are self-insuring and if the deductible is zero, the
organizers are purchasing the full insurance. The financial exposure for the deductible increases across the
interval in question if the organizers have a budget of €150000, meaning that the organizers should consider
purchasing full insurance (the minimum risk occurs at around u = 0).

In the second graph, the organizers have a budget of €200000. The financial exposure dips and reaches
a relative minimum when the value of the deductible equals €13061.67. In this scenario, the risk associated with
purchasing a deductible is lower than the risk either self-insuring (u = €25,000) or paying for the entire
insurance (u = €0). Thus, the organizers should negotiate an insurance policy with a deductible of around
€13060.

In the final graph, the organizers have a budget of €900000. As the value of the deductible b increases,
the financial exposure decreases until the value of the deductible is very close to the value of b . Similar to the
second graph, there is an absolute minimum between 0 and b ; however, in this case, the value of u at the
minimum is much closer to b . In this case, it is impractical for the organizers to purchase insurance because the
minuscule amount they save does not financially justify paying staff to select and purchase insurance for the
race (for a quantitative justification, see the Deductibles section in Part 5).

Monte Carlo Simulation

For our sensitivity analysis, we utilize Monte Carlo simulation by using pseudo-random numbers drawn
from a uniform (0,1) distribution in MATLAB. For the simulation of one event (the Zevenheuvelenloop), we
take a finite number of repeated samples, each of which simulates a finite number of times of running the
event. The simulation returns to us the cost of the insurance premium (or the payout, under self-insurance)
over a sample of races. We use this to create a probability distribution of the cost of running the event a certain
number of times. We bring in the known variables q =.0469 and p =€25000 for the Zevenheuvelenloop.

Our simulation considers the use of three policies: full insurance, no insurance, and insurance with a
deductible. Below are the equations for calculating the per-event cost of each method of insurance, which we
repeat 100 times and then use as one sample in our probability distribution on page 4 of the Appendix.

Uninsured: f random number from uniform (0,) distribution , annual cost ;i 1 < q = b
else, annual cost = 0

Full Insurance: nnual cost nsurance flat rate 1)a = i = (+ a
m * b * q

Scaled Deductible: f random number , annual cost 1)(1) ;i < q = (+ a
m − b

u * b * q + b
u

lse, annual coste = 1)(1)(+m − b
u * b * q

2016021
Page 12/20

As the problem states, the organizing committee loses money over a long period of time if it purchases
insurance, as insurance companies relies on a large pool of customers to generate a profit. The 95% confidence
intervals and means for the costs of each of these policies over a sample of 1000 races are:

Uninsured: (720000, 1160000) Mean: €938422

Fully Insured: (1031250, 1031250) Mean: €1031250

Deductible (20%): (969000, 1057000) Mean: €1012775

As one would expect, the consequence of the lower mean cost over many races without insurance has a
wider confidence interval for the cost in each of the samples, since a few record-breakings can create a large
amount of variability. In other words, the organizing committee can choose to obtain a lower mean cost over
1000 races of the Zevenheuvelenloop at the expense of having less predictability of the cost from race to race.
This is why calculating confidence intervals for the financial exposure is important, because while an average
lower cost is preferable for the organizers of the race, they have to take into account the chance that a world
record will be broken without sufficient funding or insurance to prevent the committee from going into
bankruptcy (this represents a scenario near the upper extreme of the confidence interval).

Part 4: Criteria for the Track and Field Meet Organizer to Purchase Insurance
There are several factors that will impact whether or not purchasing insurance will create greater

financial exposure for the organizers relative to purchasing insurance. First, the amount of prize money (b)
increases financial exposure if self-insuring because the organizer has a lower chance of being able to pay the
prize money if b is high. Second, the percentage likelihood that the world record will be broken at this event (q)
affects whether or not insurance should be purchased: the greater likelihood the record will be broken, the
more advantageous it is for the organizers to buy insurance due to the increased probability of paying the prize
money if they self-insure. Third, the amount of the money in the organizer’s budget available to be spent on
either paying the prize money directly or paying the insurance premium (- s) affects the decision to buy or notβ
buy insurance because if the organizers have enough money in their budget to pay for the prize money, they
would not need to buy insurance. Conversely, if the organizer does not have nearly enough money to pay the
prize without going bankrupt, they have much more reason to buy insurance. Last, the amount of the insurance
company’s expenditures as a fraction of income (d) affects the insurance purchase decision because the
insurance company’s operating costs (which vary roughly by continent, see Assumption 2) affect the price of
the premium, which in turn affects the desirability of an insurance purchase.

When the organization chooses events for which to purchase insurance, it is logical that the
organization chooses events for which the record has a higher probability of being broken. Since the
record-breaking frequency of different events has serious financial implications, research has already been done
into the determinants of that frequency. Perhaps unsurprisingly, researchers have uncovered a connection
between the “accessibility” of a sport and the frequency with which its records are broken.

For example, eastern Africa is home to some of the world’s best athletes, as well as some of its worst
poverty. East Africans with bodies well-suited to swimming might never encounter a swimming pool, as
researchers point out [12]. Much of the human potential remains untapped, and the world record reflects those
with bodies less-suited to swimming or the small proportion of ideal athletes who do have more access to
athletic resources. By contrast, strong athletes in East Africa have much more opportunity to develop their
running ability, and running is one of the sports with the highest accessibility. This disparity in accessibility
explains the observation that world records are much less likely to be broken in high-accessibility sports , where many more
people have had the opportunity to try and beat previous standards, and where more of human potential has
been tapped.

Although this is arguably intuitive, we now quantitatively examine the most salient determinants of the
decision to insure; that is, which factors ought the race organization consider most heavily in their
determination to purchase, or not purchase, insurance? To answer this question, we find the derivatives (slopes)
of the difference between non-insured and insured financial exposure, which determines whether or not the
organizer should purchase insurance and how much more risk they take on acting opposite that determination,
against each criterion variable. To derive r n - r i , we first find m in terms of a and d by assuming that the profit

2016021
Page 13/20

margin for the insurance company is around 10.2% (see Assumption 5) and equating 10.2% of the total
premium (e = a + m) and the profit calculated from m - o :

 .102 * (a + m) = (1 - d) * m - a * d (from equation 5)
 m = .898−d

.102a+a d*

a
m = .898−d

.102+d (23)

We find r n - r i to be b * q * * (1 -) and derive equation 24 by substituting in for . We obtain:a
m

β
s+b q*

.898−d

.102+d
a
m

r n - r i = b * q * ()*(1 -).898−d
d+.102

β
s+b q* (24)

We then partially differentiate equation 23 by each variable (b , q , , d , s) assuming all other variables remainβ
constant to find the how much the financial exposure difference is changed by one unit change in each factor
(see equations 25-29). The partial differentiation provides us with five weights, one weight per factor, since the
amount of influence each factor has on the risk should directly relate to the weight we assign to it. To compute
the weight of each factor relative to the others, we divide each raw weight by the sum of the raw weights to
obtain a relative weight for each (see equations 30-34)

∂b
∂(r −r)n i = Xb =)|| β (d−.898)*

2 q (b q+.5 (s−β)) (d+.102)* * * * * || (25) Xb.std = Xb
X +X +X +X +Xb q β d s

 (30)

∂q
∂(r −r)n i = Xq =)|| β (d−.898)*

2 b (b q+.5 (s−β)) (d+.102)* * * * * || (26) Xq.std = Xq
X +X +X +X +Xb q β d s

 (31)

∂β
∂(r −r)n i = | |Xβ = β (d−.898)2

*
−b q (d+.102)(s+bq)* * (27) Xβ.std = Xβ

X +X +X +X +Xb q β d s
(32)

∂d
∂(r −r)n i = | |Xd = β (d−.898)

*
2

−b q (s+bq−β)* * (28) Xd.std = Xd
X +X +X +X +Xb q β d s

 (33)

∂s
∂(r −r)n i = | |Xs = β (d−.898)

*

b q (d+.102)* * (29) Xs.std = Xs
X +X +X +X +Xb q β d s

 (34)

All of the weights computed above require a d value, so we calculated a corresponding value for each of
the six continents. We first select a large insurance company based in Europe, North America, Asia, South
America, Australia, and Africa. Based on Assumption 2, the operating cost per unit of income should remain
relatively constant per continent, so we analyze the financial reports of one insurance company based in each
continent. From their financial report, we found the company’s operating costs excluding insurance related
expenditures and divided it by the total revenue. Our results are summarized in the table below:

Continent Europe North Amer. Asia South Amer. Australia Africa

Company Ageas Allstate AIA Group Bradesco IAG MMI Holdings

d 0.1559 0.127 0.1564 0.1613 0.0783 0.1

Table 1. Operating costs to income ratio for the six main continents

Objective-C User-Facing Program #2: Relative Weights Calculator

Now that the model used to address question 4 is complete, we again develop a software program
using Objective-C to automate computations with this model, as we did with question 3. The source code
begins on page 35 of the Appendix. Again, this will allow us to rapidly verify our results and provides the race
organizers a simple interface from which to enter inputs and obtain results. Since the issue in question is now
specifically how to weight each factor in the insurance-purchasing decision, the software we develop here will
address that issue directly. This program takes five inputs; in variable form, they are b , q , s, and d . Although,β
the race organizers can easily supply the first four values themselves, they have no easy way of accessing d . We
do the work for them by requesting the continent in which they wish to purchase insurance, then using a
standard value of d for that continent from the table above, consistent with Assumption 2. Using equations
25-34, the program computes the five standardized weights. The results the program provides explain how
much weight ought to be given to each factor in the organizing committee’s decision-making analysis. We now
provide an example of the question 4 weighting software, again using the values from the Zevenheuvelenloop.
We obtain the following output:

2016021
Page 14/20

Figure 7. The weighting calculator we have built uses our model to determine how much weight should be given
to each factor when deciding whether or not to purchase insurance for a given event.

Notice that q , the probability that the record is broken, is given an overwhelming majority of the weight. This
makes sense, since q determines how likely it is that a payout needs to happen in the first place. If q is always
this high, we should largely base our decisions on q . In the next section, an extensive sensitivity analysis
demonstrates that q does in fact carry the greatest weight in most circumstances. We can apply this result
directly to the insurance question. If the organizers of a major athletics competition must choose between
insuring the 50-meter freestyle and the long jump, for example, there is perhaps little question that they ought
to insure the long jump, where the world’s best talent has had less opportunity to try to break the record. This
point is illustrated in the difference in the world record progression for the men’s 50m freestyle, which is
broken on average roughly every other year, and the world record progression for the men’s long jump, which
is only broken roughly every five years. [18] The record progression, in conjunction with the high weight allocated
to q , in conjunction with the research on accessibility mentioned above, all suggest the organizers ought to give
q the vast majority of the weight.

Sensitivity Analysis

Local Method:
Our sensitivity analysis is based on combining the one-factor-at-a-time approach, where we observe the

effects of the variables of a multivariate function, in our case the weight functions, with partial derivatives to
find the sensitivity of our weights around a local value which we fix as constant using real-world data. Using
MATLAB, we take the partial derivatives at the real-world values, x0, for all combinations of the five weight
functions and their five constituent variables. Essentially, this method tests the sensitivity of the weighting
expressions developed in equations 25-29 to a wide range of values.

.5 0|| ∂b
∂xb ||x0 = 4 * 1 −9 0027|| ∂q

∂xb ||x0 = . .8 0|| ∂β
∂xb ||x0 = 4 * 1 −8 .8 0|| ∂s

∂xb ||x0 = 4 * 1 −8 .6 0|| ∂d
∂xb ||x0 = 8 * 1 −5

0027|| ∂b
∂xq ||x0 = . 277.7 || ∂q

∂xq ||x0 = 1 0256|| ∂β
∂xq ||x0 = . 0256|| ∂s

∂xq ||x0 = . 6.06 || ∂d
∂xq ||x0 = 4

.8 0|| ∂b
∂xβ||x0 = 4 * 1 −8 0256|| ∂q

∂xβ||x0 = . .03 0|| ∂β
∂xβ||x0 = 7 * 1 −9 .52 0|| ∂s

∂xβ||x0 = 3 * 1 −9 0062|| ∂d
∂xβ||x0 = .

.8 0|| ∂b
∂xs ||x0 = 4 * 1 −8 0256|| ∂q

∂xs ||x0 = . .53 0|| ∂β
∂xs ||x0 = 3 * 1 −9 || ∂s

∂xs ||x0 = 0 0063|| ∂d
∂xs ||x0 = .

2016021
Page 15/20

.6 0|| ∂b
∂xd ||x0 = 8 * 1 −5 6.06 || ∂q

∂xd ||x0 = 4 0062|| ∂β
∂xd ||x0 = . 0063|| ∂s

∂xd ||x0 = . 3.97 || ∂d
∂xd ||x0 = 1

The partial derivative of one of the weight functions with respect to any relevant variable gives us the rate of
change in financial risk if we were to alter that variable near the local value specified (x0). As a result, this
method gives us a good idea of how much the weight of a factor changes with a change in one of the variables.

Most of these values are relatively small, but some notable relationships are and277.7 || ∂q
∂xq ||x0 = 1

. This means that the weight of the probability of a record being broken is very sensitive to6.06 || ∂d
∂xq ||x0 = 4

changes in that probability itself and also to the ratio d of the insurance company’s operating expenses to its
income.
Scatter Plot Approach:

The downside of using the partial derivative in sensitivity analysis is that it limits the scope to which the
sensitivity of the outputs may be affected by the uncertainty in the inputs, since it is only accurate close to x0,
the only place where we have real-world values. To account for a larger scope of values for each of the
variables, we use the scatter plot approach, which can incorporate limitless variability in the input variables.
Below are the 25 scatter plots, pairing each one of the five weight functions with each of the five variables.

Figure 8. Scatter plots created from 5000 random samples of the weighted functions using Normal distributions
for each of the variables; the labels down the left denotes the weight function that is being plotted and the
labels across the top denote the variable that the function is plotted against; full graphs on page 5 of the

Appendix

The scatter plots are produced by taking samples of sets of the five variables from five separate Normal
distributions centered around their real-world values with arbitrary standard deviations (we choose µ/10, but
the standard deviation we choose is inconsequential because we are concerned with the effect on the value of
the function, which will show the same effect regardless of the spread of the independent variables). The y-axis
of the graph is the label of the weight functions down the left and the x-axis of the graph is the label of the
variables across the top. If the function is not sensitive to the variable, one can expect to see an upright

2016021
Page 16/20

elliptical cluster, as changing the variable as an independent value does not significantly alter the distribution.
However, if the shape of the cluster strays off from this shape to look more like an ellipse on an oblique axis,
the function is significantly sensitive to the variable.

For example, the effect of the amount of prize money on the weight allocated to xb is very small, as the
scatter plot (in red) shows an upright ellipse. However, the weight of xb is greatly affected by the budget for the
event, whose scatter plot (in green) shows an ellipse on a tilted axis. Full graphs begin on page 5 of the
Appendix and the MATLAB code used to generate them may be found on page 26 of the Appendix.

Further analysis on these scatter plots yields correlation coefficients that quantify the sensitivity of a
function to each of its constituent variables. Below is a table for the correlation coefficients as they correspond
to the scatter plots above. The higher the absolute value of the correlation coefficient, the more influential the
variable is on the function.

Correlation

between

b q s β d

x
b

-.0033 -.0245 -.6889 .6901 .0155

x
q

-.0087 .0095 -.6869 .7108 -.0169

x
s

-.5189 -.5207 .0033 .5274 -.3851

xβ
.3391 .3353 .3441 -.7116 .2842

x
d

-.0119 -.0314 -.6945 .6975 .0092

Table 2. Correlation coefficients quantifying the sensitivity of the weight functions in the above scatter plots
from uncertainty in the input variables

Note that a given variable is not necessarily the biggest influencer of the weight given to itself: a change
in b , for example, does not change the weight given to b nearly as much as a change in s or .β

Results of the local sensitivity analysis show us which variables have the greatest direct change on the
value of each of our multivariate weight functions. Results of the scatter plot approach show us how much a
change in one variable can affect the spread of samples of the weight function. Our thorough sensitivity
analysis shows us which variables our model is more sensitive towards and which ones do not affect our
outcome as much. The scatter plot method shows us that our model is most sensitive to the spending on an
event, the budget of an event, and the probability that a world record will be broken, but the overall sensitivity
values are extremely low, meaning that our model can function accurately even under extreme conditions.

Part 5: Determination of Which Events to Insure

We now consider the example case of a track and field competition holding 40 events, 20 for men and
20 of the same events for women. The organizing committee planning the competition has a fixed budget and
fixed amount of spending (exclusive of insurance premiums and bonus payment costs), but it can choose how
to allocate that budget toward insurance purchases. The decision to buy insurance varies significantly by event,
on the basis of factors such as the probability the record will be broken in any given event, and the magnitude
of the payout that would be paid to the record-breaker. The organizing committee must determine whether or
not it seems to be in the financial interest of the event to purchase insurance for any particular event, taking
into account the factors mentioned above.

We already have a computer program (User-Facing Program #1; see Part 3) that uses our expressions
for financial exposure to find the percent difference between the financial exposure associated with self insuring
and that associated with purchasing insurance for each event. We prioritize which events to insure based on
the calculated percent difference of financial exposure. This is summarized in the following decision scheme:

2016021
Page 17/20

Figure 9. Decision scheme for 40 track and field events with binary outcomes (insurance vs. self-insurance)

Objective-C User-Facing Program #3: Decision-Scheme Automation for 40 Events
To automate the Round 1 and 2 decision schemes, we create our third and final program, which is our

most comprehensive computational treatment of the insurance problem. As always, the Objective-C code may
be found in the Appendix, starting on page 42. The code is very heavily commented; we have included
extensive “comments” that are ignored by the compiler but show the viewer what the code is doing. The
program starts out with a very long list of variable definitions and conversions, but the logic of the program
(where the bulk of the commenting appears) may be found on pages 68-73 of the Appendix. Using the decision
scheme described above, the program builds upon all the models we have built so far, analyzing risk, calculating
excess budget amounts, and eventually making recommendations. The program automates the entire
procedure, including the risk calculations previously processed by User-Facing Program #1, so that the user
may simply enter the inputs and instantly (<600 ms) obtain results. Inputs required include the total budget for
the meet, the total expenditures excluding spending related to insurance or paying the prize money, and the
probability the world record will be broken, the prize money, and the cost of the insurance premium for each
event. The program essentially follows the following four steps:

1. Calculate the financial exposure entailed with each of the two scenarios (purchasing insurance or not
purchasing insurance). Compute the relative risk and determine which of the two scenarios is more
financially risky. All events for which it is riskier to purchase insurance are rendered nonviable and
taken out of consideration, so the program recommends not purchasing insurance for these events.

2016021
Page 18/20

2. Viable events continue into the next round. The program orders the events from greatest percent
difference between the financial exposure of self-insurance and that of purchasing insurance to least
(those events where it is most urgent to purchase insurance to those events where it is least urgent to
purchase insurance). Starting with the first event, the program determines whether the organizing
committee can afford the insurance premium for that event (we assume they know the value of the
premium from their insurance quote, and we also have equations 3-7 to estimate that premium, which
we use to generate premium values for the test case).

3. If the organizing committee cannot afford the premium, they will be forced to take the risk of
self-insurance (any event that is still viable by round 2 has a greater non-insurance risk than insurance
risk, but if the premium is not financially accessible, the committee does not have a choice). The
program will recommend not purchasing insurance for that event. If the organizing committee can
afford the premium, the program will recommend that insurance be purchased. The amount of the
premium for this plan is deducted from the amount of capital the organization has at its disposal. This
process is repeated until there is no disposable capital left. Even if later insurance premiums are
cheaper, they are for events where the committee faces less risk with self-insurance, so they should not
insure.

4. The program informs the user of its recommendations; specifically, where (for which events) insurance
should be purchased and where it should not.
Using real-world data from the same source as that provided to us for the Zevenheuvelenloop[18], we

generate a test case of 40 track and field events, with 20 for men and 20 for women.

Figure 10. Our final program uses our risk and weight models, along with our decision scheme, to choose events
for which insurance should be purchased based on inputs provided by the user (here, our test case).

Note: To find the probability of breaking the world record in each event, we obtained data describing the
number of world records broken per event. We calculated the average probability of breaking the world record
per year by dividing the number of times the world record was broken by the number of years event times were
counted. Ideally, we would have calculated the probability of the world record being broken based on the
number races run rather than by year, however, we are only interested in the relative world record breaking
probabilities of each event: we only want to know if, for example, it is more likely for a steeplechase world
record to be broken than a 100m sprint world record. This would mean that the prize money for steeplechase
would be more likely to be paid out than that of the 100m sprint and would possibly make it more worthwhile
to purchase insurance for the steeplechase than the 100m sprint.

Deductibles

Our alternative model takes deductibles into account and uses the equation 19 from Part 3 that gives us
the financial exposure for the organizing committee in terms of the amount of the deductible.

2016021
Page 19/20

Figure 11. Decision scheme for 40 track and field events with three outcomes

The organizers will first input the necessary known values about each event into MATLAB Program 6
(see page 31 of the Appendix for the software code). The software will automatically find the minimum of the
equation for each event with the appropriate constants and return a suggested course of action for the
organizers, whether to purchase full insurance, purchase insurance with a suggested deductible amount, or
self-insure. Because of the shape of the equation with an asymptote at the prize value (b), it will be impossible
for the risk to be lowest when the deductible amount is the same as the prize value (see the graphs in Figure 6).
While the graphs indicate that it may never be more advantageous to self-insure, the x-value of the minimum of
the graph could be so close to the prize value that buying an insurance policy with such a high deductible
amount will be practically the same as self-insuring. We decided for the cut-off point to be 90% of the prize
value. A small example affirms the validity of our cut-off point. If the prize value is $50,000 and the suggested
deductible is 90%, or $45,000, then the insurance premium will be around 1.35 * (average cost of the bonus
minus the deductible) -- see equations 16 and 18 -- and the amount the insurance company will need to pay
$5000. If we set the hypothetical probability of breaking the world record to be .3, the premium is
approximately:

1.35 * (b - u) * q = 1.35 * 5,000 * .3 = $2025
Therefore, the total amount the organizer needs to pay if the world record is broken is $47,025, which is
sufficiently close to the amount they need to pay had they not bought insurance ($50,000, a difference of
5.95%) that it is generally not worth the effort (and cost, which could easily exceed $3000) of researching and
buying insurance.

Examples of how the deductible scheme will work for a single event can be found in Part 3.

Strengths and Weaknesses

We are confident in our model’s ability to make the best possible recommendation as to whether or not
an event organization committee should purchase insurance for any given event. A challenge presented in this
problem is the fact that, in the long run, purchasing insurance will always net a negative financial outcome for
the committee. Models focused solely on long-term cash flow will thus always recommend that the committee
self-insure in all cases. Our model overcomes this challenge by quantifying the risk of financial exposure, the
reason for which people are more willing to sustain a small financial loss than risk losing a large loss of money.
Our model takes into account the financial exposure of buying insurance (potential financial loss if no world
record is broken) and self-insurance (potential financial loss if world record is broken).

Another important strength of our solution is the deductible model that allows the race organizer the
additional option of purchasing insurance with deductible provisions that allow them to lower their premiums.
Although the problem only asked for us to distinguish between buying insurance and self-insuring, adding on
the option of deductibles greatly contributes to the real world applicability of our paper since most insurers

2016021
Page 20/20

provide insurance with deductibles as an option, and this can be the best option for the organizers, as shown in
Part 3. Our model not only suggests to the organizer whether they should purchase full insurance, insurance
with deductibles, or self-insure, but also suggests a deductible amount that yields the lowest financial exposure
for the organizer if deductible-based insurance is indeed the most financially viable option.

An important strength to our model is the thoroughness of our sensitivity analysis. We have utilized
both local and global methods to find and display how sensitive the weight of each factor is to each of the
variables in our model. The 25 scatter plots included in the sensitivity analysis show exactly what impact a
variable has on the random samples, and this effect is quantified with the correlation coefficient. This shows us
to place the most emphasis on q , an assertion reaffirmed both by 1) our software in a quantitative way, and 2)
the literature cited above, in turn allowing us to provide a concrete and simple piece of advice to the organizing
committee: when deciding whether or not to insure an event, if there is one factor you can consider, consider q ,
the probability a record is set.

Finally, our suite of user-friendly software programs follows a reasonable decision-making scheme that
assists the committee in buying the most insurance it can while prioritizing those events in most urgent need of
insurance. Our software allows the user to easily compute the results from our models, and the models are fully
developed and can be easily and immediately implemented by a real committee with no further revision; it
accurately, clearly, and reliably explains exactly how they should allocate the limited funds they have with which
to purchase insurance.

A potential weakness in our paper is our second Assumption that states that insurance companies have
similar operating costs per currency (dollar/euro) earned as income across a continent. While we calculated
distinct rates per continent to have better approximations of the real operating costs to income ratio, our
estimates are still not 100% accurate since these numbers are at least somewhat unique to each individual
insurance broker. We still believe, however, that the variation will not be so great as to disaffirm the outcome of
our model because in order for an insurance company to offer reasonable premiums and still make a profit, the
operating cost to income ratio must be set within a small range (the ratios for all of the continents, with the
exception of Australia, lay within 4% of each other). A second weakness of our paper and model is that we are
significantly hampered in terms of our ability to accurately quantify q , the probability that a world record is
broken. Although our sensitivity analysis confirms that q is extremely important to our calculations,
determination of that value is extremely difficult. The best we can do is use record progressions similar to that
presented in the final page of the problem statement (since we always compare events relative to each other and
insurance premiums are computed based on q , systematic inflation or deflation of those rates due to better or
worse competition is not a problem), but it is very difficult to know whether these values will hold for any given
race.

Conclusion

We approach this problem by developing a relative financial exposure model that compares the relative
financial risks of purchasing insurance versus self-insuring. Taking into account the prize money to budget ratio
for each event, the model accounts for the possibility of a payout the organizer cannot afford. Multiple criteria
(prize money, the probability of breaking the world record, the budget of the race, and the number of races
held) are taken into account. This model is of great use to any event organizer with potential need for prize
indemnity insurance because its quantification of financial exposure allows for direct comparison and points to
a clear suggested course of action. The programs we develop, which process inputs through our models and
then output the suggested insurance policy also make our model extremely easy to use and thus applicable on a
large scale in the real world. Our additional model offering the possibility of an insurance policy with
deductibles provides more realistic choices for the race organizer that could lower financial exposure even more
than the binary option of buying insurance or self-insuring. We designed a program to do this that reduces
operational difficulties associated with its implementation and allows for widespread use. We are excited to
offer robust models whose results can be integrated and automated to produce the best possible advice for race
organizing committees.

2016021
Bibliography Page 1

Works Cited

1. Ageas, S.A. "Ageas Annual Report 2013." Ageas.com . Ageas, S.A., 19 Mar. 2014. Web.

26 Mar. 2016. <http://ageas.com/sites/default/files/AFS_2013_UK_Final.pdf>.

2. Allstate Corporation. "The Allstate Corporation Notice of 2014 Annual Meeting, Proxy

Statement and 2013 Annual Report." Allstate.com. The Allstate Corporation, 7

Apr. 2014. Web. 30 Mar. 2016.

 <https://www.allstate.com/resources/allstate/attachments/annualreport/allstate

 2014ammaterials.pdf>.

3. Apple, Inc. Xcode. Vers. 5. Cupertino: Apple, Inc., 2013. Computer software.

4. Banco Bradesco SA. "Bradesco 2014 Annual Report." Bradescori.com.br. Bradesco SA,

2014. Web. 30 Mar. 2016.

<https://www.bradescori.com.br/site/conteudo/informacoesfinanceiras/relatorios

anuais.aspx?secaoId=811&idiomaId=2>.

5. Forbes. "The World's Biggest Public Companies: AIA Group." Forbes.com. Forbes

Magazine, May 2015. Web. 30 Mar. 2016.

<http://www.forbes.com/companies/aiagroup/>.

6. Insurance Australia Group. "The Numbers: Insurance Australia Group Annual Report

2014." Iag.com.au. Insurance Australia Group Limited, 19 Aug. 2014. Web. 30

Mar. 2016.

<http://www.iag.com.au/sites/default/files/Documents/Results%20%26%20repo

rts/FY14_RR_IAG_annual_report_2014_20140819.pdf>.

7. Mathworks. MATLAB . Vers. 2015b. Natick, MA: Mathworks, 2015. Computer software.

https://www.allstate.com/resources/allstate/attachments/annual-report/allstate-
https://www.bradescori.com.br/site/conteudo/informacoes-financeiras/relatorios
http://www.iag.com.au/sites/default/files/Documents/Results%20%26%20repo

2016021
Bibliography Page 2

8. MMI Holdings. "MMI Holdings Integrated Report 2014."

Mmiholdingsintegratedreport2014.com. MMI Holdings Ltd Group, 2014. Web.

30 Mar. 2016.

<http://mmiholdingsintegratedreport2014.com/wpcontent/uploads/pdf/MMI_

IR_2014_Full.pdf>.

9. Moynihan, Shawn. "Top 100 P&C Insurance Companies: Q1 Comparisons, Ranked by

Net Premiums Written." Propertycasualty360.com. ALM Media, LLC, 12 June

2014. Web. 27 Mar. 2016.

<http://www.propertycasualty360.com/2014/06/12/top100pcinsurancecompa

niesq1comparisonsrank?slreturn=1459124584>.

10. Mulkeen, John. "BOLT AGAIN, AND AGAIN! 19.19 WORLD RECORD IN BERLIN."

International Association of Athletics Federations. IAAF, 20 Aug. 2009. Web. 30

Mar. 2016.

11. Pruijsen, Klaas. "Zevenheuvelenloop: Effectmeting Nijmeegse Evenementenmonitor."

Nijmegen.nl . Gemeente Nijmegen Afdeling Onderzoek En Statistiek, Feb. 2009.

Web. 27 Mar. 2016.

<http://www.nijmegen.nl/rapportenzoeker/Docs/Effectmeting_7heuvelenloop_

2008_feb2009.pdf>.

12. Silver, Nate. "Which Records Get Shattered?" The New York Times. The New York

Times, 28 July 2012. Web. 26 Mar. 2016.

<http://www.nytimes.com/2012/07/29/sundayreview/whyolympicrecordsare

brokenornot.html?_r=0>.

http://mmiholdingsintegratedreport2014.com/wp-content/uploads/pdf/MMI_
http://www.propertycasualty360.com/2014/06/12/top-100-pc-insurance-compa
http://www.nijmegen.nl/rapportenzoeker/Docs/Effectmeting_7heuvelenloop_
http://www.nytimes.com/2012/07/29/sunday-review/why-olympic-records-are-

2016021
Bibliography Page 3

13. Sohn, Emily. "How Do Olympians Keep Getting Better?" News.discovery.com.

Discovery Communications, LLC, 9 Aug. 2012. Web. 26 Mar. 2016.

<http://news.discovery.com/adventure/extremesports/athletesolympicrecords

120809.htm>.

14. Statista. "Leading Global Insurance Companies by Revenue 2014." Statista. Statista, Inc.,

n.d. Web. 26 Mar. 2016.

<http://www.statista.com/statistics/185746/revenueoftheleadingglobal

insurancecompanies/>.

15. USA Track & Field. "USA Track & Field Prize Money (Indoor Events)." Usatf.org.

USA Track & Field, Inc., 2012. Web. 30 Mar. 2016.

<http://www.usatf.org/EventsCalendar/2012/IAAFWorldIndoor

Championships/AthleteInfo/PrizeMoney.aspx>.

16. USA Track & Field. "USA Track & Field Prize Money (Outdoor Events)." Usatf.org.

USA Track & Field, Inc., 2013. Web. 30 Mar. 2016.

<http://www.usatf.org/EventsCalendar/2013/IAAFWorldChampionshipsin

Athletics/AthleteInfo/PrizeMoney.aspx>.

17. Wall Street Journal. "AIA Group Ltd. 1299 (Hong Kong)." Quotes.wsj.com . Dow Jones

& Company, Inc., 30 Mar. 2016. Web. 30 Mar. 2016.

<http://quotes.wsj.com/HK/XHKG/1299/financials/annual/incomestatement>.

18. Wikimedia Foundation. "List of World Records in Athletics." Wikipedia. Wikimedia

Foundation, 20 Mar. 2016. Web. 30 Mar. 2016.

http://news.discovery.com/adventure/extreme-sports/athletes-olympic-records-
http://www.statista.com/statistics/185746/revenue-of-the-leading-global-
http://www.usatf.org/Events---Calendar/2012/IAAF-World-Indoor-
http://www.usatf.org/Events---Calendar/2013/IAAF-World-Championships-in-

2016021
Bibliography Page 4

19. World Bank. "Real Interest Rates." Data.worldbank.org. World Bank Group, n.d. Web.

26 Mar. 2016. <http://data.worldbank.org/indicator/FR.INR.RINR>.

20. Yahoo! Finance. "Industry Summary." Biz.yahoo.com. Yahoo! Inc., 2016. Web. 26 Mar.

2016. <https://biz.yahoo.com/p/sum_qpmd.html>.

21. Zevenheuvelenloop. "Inschrijving 2016 Vanaf 1 Juni." Scholten Awater

Zevenheuvelenloop. De Scholten Awater Zevenheuvelenloop Wordt

Georganiseerd Door Stichting Zevenheuvelenloop, 2015. Web. 30 Mar. 2016.

<http://www.zevenheuvelenloop.nl/deelnemers/zevenheuvelenloop/inschrijven

15km>.

https://biz.yahoo.com/p/sum_qpmd.html
http://www.zevenheuvelenloop.nl/deelnemers/zevenheuvelenloop/inschrijven

2016021

Appendix Page 1

Appendix
Table of Contents

Graphs and Displays

Question 3

 Graph of Zevenheuvelenloop r n values 3

 Graph of Zevenheuvelenloop r i values 3

 Simulation for the Cost of Multiple Zevenheuvelenloops 4

Question 4

 Graphs from MATLAB Program 4 (Scatter Plot Based Sensitivity Analysis) 5

Tables

Question 3

 Table of values for r n 17

 Table of values for r i 18

 Table of values for r n - r i 18

Question 4

 Table of World Records 19

MATLAB Programs

Question 3

 MATLAB Program 1: Simulation of the Zevenheuvelenloop 19

Question 4

 MATLAB Program 2: Simulation of an Event with Multiple Races 21

 MATLAB Program 3: Analysis of the Difference Between going Insured and Uninsured 22

 MATLAB Program 4: Local Sensitivity Analysis using Partial Derivatives 23

 MATLAB Program 5: Global Sensitivity Analysis using Sampling Based Approach 26

Question 5

 MATLAB Program 6: Using Deductibles 31

User-Facing Programs (Objective-C)

Question 3

 Objective-C Code for User-Facing Program #1: Prize Indemnification Insurance Risk

Calculator
33

Question 4

 Objective-C Code for User-Facing Program #2: Weight Calculations 36

Question 5

 Objective-C Code for User-Facing Program #3: Decision-Scheme Automation for 40

Events
42

Derivations

Question 3

 Derivation of m (additional amount within premium added to average cost of bonus) 80

Graphs and Displays

Question 3:

Graph of Zevenheuvelenloop r n values

Graph of Zevenheuvelenloop r i values

Graphs from MATLAB Program 2:

95% Confidence Interval of the Cost of 100

Zevenheuvelenloops with Deductible: (83750,

102780)

95% Confidence Interval of the Cost of 100

Zevenheuvelenloops with Full Insurance: (100000,

100000)

95% Confidence Interval of the Cost of 100

Zevenheuvelenloops with No Insurance: (50000,

100000)

A histogram of the cost of running the

Zevenheuvelenloop for 1000 years with different

insurance plans

Question 4:

Graphs from MATLAB Program 4:

Correlation Coefficient: r=-.0033

r=-.0245

r=-.6889

r=.6901

r=.0155

r=-.0087

r=.0095

r=-.6869

r=.7108

r=-.0169

r=-.5189

r=-.5207

r=.0033

r=.5274

r=-.3851

r=.3391

r=.3353

r=.3441

r=-.7116

r=.2842

r=-.0119

r=-.0314

r=-.6945

r=.6975

r=.0092

Tables

Question 3:

Table of Zevenheuvelenloop r n values with respect to t and β

Table of Zevenheuvelenloop r i values with respect to t and β

Table of Zevenheuvelenloop r n - r i values with respect to t and , with the transition from positive to negativeβ

financial exposure difference highlighted

Question 4:

Table of 20 track-and-field events with prize money and number of world records per year for men and women

MATLAB Programs

Question 3:

MATLAB Program 1: Simulation of the Zevenheuvelenloop

clear all;

phat=3/64;

NUMBER_OF_TRIALS=10000;
NUMBER_OF_YEARS=1000;
COST_PER_YEAR=0;
INSURANCE_PROFIT_MARGIN=1.1;
PRIZE_MONEY=20000;
DEDUCTIBLE=.2;
INSURANCE_FLAT_RATE=INSURANCE_PROFIT_MARGIN*phat*PRIZE_MONEY;

%% creates distribution using deductible scaled to p-hat
for j=1:NUMBER_OF_TRIALS

 for i=1:NUMBER_OF_YEARS

COST_PER_YEAR=COST_PER_YEAR+INSURANCE_PROFIT_MARGIN*(1-DEDUCTIBLE)*PRIZE_MONEY*phat;
 if rand<phat

 COST_PER_YEAR=COST_PER_YEAR+(DEDUCTIBLE)*PRIZE_MONEY;
 end
 COSTS_SCALED_SAMPLE(i)=COST_PER_YEAR;
 COST_PER_YEAR=0;

 end

 Appendix Page 20

 COSTS_SCALED(j)=sum(COSTS_SCALED_SAMPLE);
end

CI_SCALED=[prctile(COSTS_SCALED,5), prctile(COSTS_SCALED,95)]

%% insurance with no deductible
for j=1:NUMBER_OF_TRIALS

 for i=1:NUMBER_OF_YEARS
 COST_PER_YEAR=COST_PER_YEAR+INSURANCE_FLAT_RATE;
 COSTS_FLAT_SAMPLE(i)=COST_PER_YEAR;
 COST_PER_YEAR=0;

 end
 COSTS_FLAT(j)=sum(COSTS_FLAT_SAMPLE);

end

CI_FLAT=[prctile(COSTS_FLAT,5), prctile(COSTS_FLAT,95)]

%% creates distribution with no insurance at all
for j=1:NUMBER_OF_TRIALS

 for i=1:NUMBER_OF_YEARS
 if rand<phat

 COST_PER_YEAR=COST_PER_YEAR+PRIZE_MONEY;
 end
 COSTS_UNINSURED_SAMPLE(i)=COST_PER_YEAR;
 COST_PER_YEAR=0;

 end
 COSTS_UNINSURED(j)=sum(COSTS_UNINSURED_SAMPLE);

end

CI_UNINSURED=[prctile(COSTS_UNINSURED,5), prctile(COSTS_UNINSURED,95)]

% [counts1, binCenters1] = hist(COSTS_UNINSURED);
% [counts2, binCenters2] = hist(COSTS_FLAT);
% [counts3, binCenters3] = hist(COSTS_SCALED);
% plot(binCenters1, counts1, 'r-','LineWidth',5);
% hold on;
% plot(binCenters2, counts2, 'g-','LineWidth',5);
% plot(binCenters3, counts3, 'b-','LineWidth',5);

[n,x] = hist(COSTS_UNINSURED);
[n2,x2] = hist(COSTS_FLAT,[mean(COSTS_FLAT)+2500,mean(COSTS_FLAT)-2500]);
[n3,x3] = hist(COSTS_SCALED);
bar(x,n,'hist','facealpha',.3)
h=bar(x,n,'hist','facealpha',.8);
set(h,'facecolor','g')
hold on;
h=bar(x2,n2,'hist','facealpha',.8);
hold off
set(h,'facecolor','c')
hold on;
h=bar(x3,n3,'hist');

hold off
set(h,'facecolor','r','facealpha',.8)

grid on;
legend1 = sprintf('Mean Uninsured = %.3f', mean(COSTS_UNINSURED));
legend2 = sprintf('Mean Fully Insured = %.3f', mean(COSTS_FLAT));
legend3 = sprintf('Mean with Scaling Deductible = %.3f', mean(COSTS_SCALED));
legend({legend1, legend2, legend3});

title('Zevenheuvelenloop Spending');
xlabel(['Cost over ' int2str(NUMBER_OF_YEARS) ' years(Euros)']);
ylabel('Frequency');

Question 4:

MATLAB Program 2: Simulation of an Event with Multiple Races

clear all

SAMPLE_WR_PROPS=[1.000, 0.653, 0.754,0.731, 0.198, 0.488, 0.622, 0.560, 0.709, 0.608,
0.308, 0.260, 0.450, 0.374, 0.433, 1.043, 0.714, 0.284, 0.538, 0.417];

NUMBER_OF_YEARS=10000;
COST_PER_YEAR=0;
INSURANCE_PROFIT_MARGIN=1.1;
INSURANCE_FLAT_RATE=5000;
PRIZE_MONEY=25000;
PREMIUM_FRACTION=.2;

%% creates distribution using deductible scaled to p-hat
for i=1:NUMBER_OF_YEARS

 for j=1:length(SAMPLE_WR_PROPS)

COST_PER_YEAR=COST_PER_YEAR+INSURANCE_PROFIT_MARGIN*(SAMPLE_WR_PROPS(j))*PRIZE_MONEY*P
REMIUM_FRACTION;

 if rand<SAMPLE_WR_PROPS(j)
 COST_PER_YEAR=COST_PER_YEAR+(1-SAMPLE_WR_PROPS(j))*PRIZE_MONEY;

 end
 end
 COSTS_SCALED(i)=COST_PER_YEAR;
 COST_PER_YEAR=0;

end

figure();
hist(COSTS_SCALED);
set(get(gca,'child'),'FaceColor','r');
title('Insurance premium scaled to p-hat')
xlabel('Cost(Euros)');
ylabel('Frequency');
CI_SCALED=[prctile(COSTS_SCALED,.05), prctile(COSTS_SCALED,.95)]

%% insurance with no deductible

for i=1:NUMBER_OF_YEARS
 for j=1:length(SAMPLE_WR_PROPS)

 COST_PER_YEAR=COST_PER_YEAR+INSURANCE_FLAT_RATE;
 end
 COSTS_FLAT(i)=COST_PER_YEAR;
 COST_PER_YEAR=0;

end

figure();
hist(COSTS_FLAT);
set(get(gca,'child'),'FaceColor','b');
title('Insurance premium with no scaled deductible');
xlabel('Cost(Euros)');
ylabel('Frequency');
CI_FLAT=[prctile(COSTS_FLAT,.05), prctile(COSTS_FLAT,.95)]

%% creates distribution with no insurance at all
for i=1:NUMBER_OF_YEARS

 for j=1:length(SAMPLE_WR_PROPS)
 if SAMPLE_WR_PROPS(j)<rand

 COST_PER_YEAR=COST_PER_YEAR+PRIZE_MONEY;
 end

 end
 COSTS_UNINSURED(i)=COST_PER_YEAR;
 COST_PER_YEAR=0;

end

figure();
hist(COSTS_UNINSURED);
set(get(gca,'child'),'FaceColor','g');
title('No insurance');
xlabel('Cost(Euros)');
ylabel('Frequency');
CI_UNINSURED=[prctile(COSTS_UNINSURED,.05), prctile(COSTS_UNINSURED,.95)]

MATLAB Program 3: Analysis of the Difference Between going Insured and Uninsured

clear all
x=(0:.01:15);
y=(300000:100:400000);

[xx,yy]=meshgrid(x,y);
for i=1:size(xx,1)

 for j=1:size(yy,2)
 zz(i,j)=2*1171.88*xx(i,j)*(1+2.3826*50000/yy(i,j));

 end
end

figure();

surf(xx,yy,zz);
xlabel('time (years)');
ylabel('budget (euros)');
zlabel('risk (uninsured)');
shading interp
colorbar
%%

for i=1:size(xx,1)
 for j=1:size(yy,2)

 zz2(i,j)=2*1171.88*xx(i,j)*1.35;
 end

end

hold on;
surf(xx,yy,zz2);
xlabel('time (years)');
ylabel('budget (euros)');
zlabel('risk (uninsured)');

diff=(zz-zz2)>0;
for i=1:size(diff,1)-1

 if diff(i,2)<1
 x_val=i
 approx=300000+100*x_val;
 break

 end
end

MATLAB Program 4: Local Sensitivity Analysis using Partial Derivatives

clear all

syms b q s beta d marg
xb=abs((2*(b*q+.5*(s-beta))*(d+marg)*q)/(beta*(d-(1-marg))));
xq=abs((2*(b*q+.5*(s-beta))*b*(d+marg))/(beta*(d-(1-marg))));
xbeta=abs((-b*(d+marg)*q*(s+b*q))/((beta^2)*(d-(1-marg))));
xd=abs((-b*q*(s+b*q-beta))/((d-(1-marg))^2*beta));
xs=abs((b*(d+marg)*q)/(beta*(d-(1-marg))));

%% sensitivity analysis for xb

dxb_db=diff(xb,b);
b=25000;
q=.0469;
s=338000;
beta=340000;
d=.1559;
marg=.102;
FINALdxb_db=double(subs(dxb_db));

syms q
dxb_dq=diff(xb,q);
q=.0469;
FINALdxb_dq=double(subs(dxb_dq));

syms s
dxb_ds=diff(xb,s);
s=338000;
FINALdxb_ds=double(subs(dxb_ds));

syms beta
dxb_dbeta=diff(xb,beta);
beta=340000;
FINALdxb_dbeta=double(subs(dxb_dbeta));

syms d
dxb_dd=diff(xb,d);
d=.1559;
FINALdxb_dd=double(subs(dxb_dd));

%% sensitivity analysis for xq

syms b q s beta d marg
dxq_db=diff(xq,b);
b=25000;
q=.0469;
s=338000;
beta=340000;
d=.1559;
marg=.102;
FINALdxq_db=double(subs(dxq_db));

syms q
dxq_dq=diff(xq,q);
q=.0469;
FINALdxq_dq=double(subs(dxq_dq));

syms s
dxq_ds=diff(xq,s);
s=338000;
FINALdxq_ds=double(subs(dxq_ds));

syms beta
dxq_dbeta=diff(xq,beta);
beta=340000;
FINALdxq_dbeta=double(subs(dxq_dbeta));

syms d
dxq_dd=diff(xq,d);
d=.1559;
FINALdxq_dd=double(subs(dxq_dd));

%% sensitivity analysis for xbeta

syms b q s beta d marg
dxbeta_db=diff(xbeta,b);
b=25000;
q=.0469;
s=338000;
beta=340000;
d=.1559;
marg=.102;
FINALdxbeta_db=double(subs(dxbeta_db));

syms q
dxbeta_dq=diff(xbeta,q);
q=.0469;
FINALdxbeta_dq=double(subs(dxbeta_dq));

syms s
dxbeta_ds=diff(xbeta,s);
s=338000;
FINALdxbeta_ds=double(subs(dxbeta_ds));

syms beta
dxbeta_dbeta=diff(xbeta,beta);
beta=340000;
FINALdxbeta_dbeta=double(subs(dxbeta_dbeta));

syms d
dxbeta_dd=diff(xbeta,d);
d=.1559;
FINALdxbeta_dd=double(subs(dxbeta_dd));

%% sensitivity analysis for xd

syms b q s beta d marg
dxd_db=diff(xd,b);
b=25000;
q=.0469;
s=338000;
beta=340000;
d=.1559;
marg=.102;
FINALdxd_db=double(subs(dxd_db));

syms q
dxd_dq=diff(xd,q);
q=.0469;
FINALdxd_dq=double(subs(dxd_dq));

syms s
dxd_ds=diff(xd,s);
s=338000;
FINALdxd_ds=double(subs(dxd_ds));

syms beta
dxd_dbeta=diff(xd,beta);

beta=340000;
FINALdxd_dbeta=double(subs(dxd_dbeta));

syms d
dxd_dd=diff(xd,d);
d=.1559;
FINALdxd_dd=double(subs(dxd_dd));

%% sensitivity analysis for xs

syms b q s beta d marg
dxs_db=diff(xs,b);
b=25000;
q=.0469;
s=338000;
beta=340000;
d=.1559;
marg=.102;
FINALdxs_db=double(subs(dxs_db));

syms q
dxs_dq=diff(xs,q);
q=.0469;
FINALdxs_dq=double(subs(dxs_dq));

syms s
dxs_ds=diff(xs,s);
s=338000;
FINALdxs_ds=double(subs(dxs_ds));

syms beta
dxs_dbeta=diff(xs,beta);
beta=340000;
FINALdxs_dbeta=double(subs(dxs_dbeta));

syms d
dxs_dd=diff(xs,d);
d=.1559;
FINALdxs_dd=double(subs(dxs_dd));

MATLAB Program 5: Global Sensitivity Analysis using Sampling Based Approach

clear all

reps=5000;
marg=.102;
i=1;

syms b q s beta d
xb=((2*(b*q+.5*(s-beta))*(d+marg)*q)/(beta*(d-(1-marg))));
xq=((2*(b*q+.5*(s-beta))*b*(d+marg))/(beta*(d-(1-marg))));
xbeta=((-b*(d+marg)*q*(s+b*q))/((beta^2)*(d-(1-marg))));
xd=((-b*q*(s+b*q-beta))/((d-(1-marg))^2*beta));

 Appendix Page 27

xs=((b*(d+marg)*q)/(beta*(d-(1-marg))));

%% analysis for xb

for i=1:reps
 b=normrnd(25000,2500);
 q=normrnd(.0469,.00469);
 s=normrnd(338000,33800);
 beta=normrnd(340000,34000);
 d=normrnd(.1559,.01559);

 vars(1,i)=b;
 vars(2,i)=q;
 vars(3,i)=s;
 vars(4,i)=beta;
 vars(5,i)=d;
 vars(6,i)=subs(xb);

end

xbb=corrcoef(vars(1,:),vars(6,:));
xbq=corrcoef(vars(2,:),vars(6,:));
xbs=corrcoef(vars(3,:),vars(6,:));
xbbeta=corrcoef(vars(4,:),vars(6,:));
xbd=corrcoef(vars(5,:),vars(6,:));

figure();
scatter(vars(1,:),vars(6,:),'r.');
xlabel('Prize Money (Euros)');
ylabel('Weight of xb');

figure();
scatter(vars(2,:),vars(6,:),'m.');
xlabel('Probability of a World Record Being Broken');
ylabel('Weight of xb');

figure();
scatter(vars(3,:),vars(6,:),'k.');
xlabel('Expected Spending on the Event Excluding Prize Money (Euros)');
ylabel('Weight of xb');

figure();
scatter(vars(4,:),vars(6,:),'g.');
xlabel('Budget for the Event (Euros)');
ylabel('Weight of xb');

figure();
scatter(vars(5,:),vars(6,:),'b.');
xlabel('Insurance Operating Cost per Euro Earned as Income');
ylabel('Weight of xb');

%% analysis for xq

for i=1:reps

 b=normrnd(25000,2500);
 q=normrnd(.0469,.00469);
 s=normrnd(338000,33800);
 beta=normrnd(340000,34000);
 d=normrnd(.1559,.01559);

 vars(1,i)=b;
 vars(2,i)=q;
 vars(3,i)=s;
 vars(4,i)=beta;
 vars(5,i)=d;
 vars(6,i)=subs(xq);

end

xqb=corrcoef(vars(1,:),vars(6,:));
xqq=corrcoef(vars(2,:),vars(6,:));
xqs=corrcoef(vars(3,:),vars(6,:));
xqbeta=corrcoef(vars(4,:),vars(6,:));
xqd=corrcoef(vars(5,:),vars(6,:));

figure();
scatter(vars(1,:),vars(6,:),'r.');
xlabel('Prize Money (Euros)');
ylabel('Weight of xq');

figure();
scatter(vars(2,:),vars(6,:),'m.');
xlabel('Probability of a World Record Being Broken');
ylabel('Weight of xq');

figure();
scatter(vars(3,:),vars(6,:),'k.');
xlabel('Expected Spending on the Event Excluding Prize Money (Euros)');
ylabel('Weight of xq');

figure();
scatter(vars(4,:),vars(6,:),'g.');
xlabel('Budget for the Event (Euros)');
ylabel('Weight of xq');

figure();
scatter(vars(5,:),vars(6,:),'b.');
xlabel('Insurance Operating Cost per Euro Earned as Income');
ylabel('Weight of xq');

%% analysis for xs

for i=1:reps
 b=normrnd(25000,2500);
 q=normrnd(.0469,.00469);
 s=normrnd(338000,33800);
 beta=normrnd(340000,34000);
 d=normrnd(.1559,.01559);

 vars(1,i)=b;
 vars(2,i)=q;
 vars(3,i)=s;
 vars(4,i)=beta;
 vars(5,i)=d;
 vars(6,i)=subs(xs);

end

xsb=corrcoef(vars(1,:),vars(6,:));
xsq=corrcoef(vars(2,:),vars(6,:));
xss=corrcoef(vars(3,:),vars(6,:));
xsbeta=corrcoef(vars(4,:),vars(6,:));
xsd=corrcoef(vars(5,:),vars(6,:));

figure();
scatter(vars(1,:),vars(6,:),'r.');
xlabel('Prize Money (Euros)');
ylabel('Weight of xs');

figure();
scatter(vars(2,:),vars(6,:),'m.');
xlabel('Probability of a World Record Being Broken');
ylabel('Weight of xs');

figure();
scatter(vars(3,:),vars(6,:),'k.');
xlabel('Expected Spending on the Event Excluding Prize Money (Euros)');
ylabel('Weight of xs');

figure();
scatter(vars(4,:),vars(6,:),'g.');
xlabel('Budget for the Event (Euros)');
ylabel('Weight of xs');

figure();
scatter(vars(5,:),vars(6,:),'b.');
xlabel('Insurance Operating Cost per Euro Earned as Income');
ylabel('Weight of xs');

%% analysis for xbeta

for i=1:reps
 b=normrnd(25000,2500);
 q=normrnd(.0469,.00469);
 s=normrnd(338000,33800);
 beta=normrnd(340000,34000);
 d=normrnd(.1559,.01559);

 vars(1,i)=b;
 vars(2,i)=q;
 vars(3,i)=s;
 vars(4,i)=beta;

 vars(5,i)=d;
 vars(6,i)=subs(xbeta);

end

xbetab=corrcoef(vars(1,:),vars(6,:));
xbetaq=corrcoef(vars(2,:),vars(6,:));
xbetas=corrcoef(vars(3,:),vars(6,:));
xbetabeta=corrcoef(vars(4,:),vars(6,:));
xbetad=corrcoef(vars(5,:),vars(6,:));

figure();
scatter(vars(1,:),vars(6,:),'r.');
xlabel('Prize Money (Euros)');
ylabel('Weight of xbeta');

figure();
scatter(vars(2,:),vars(6,:),'m.');
xlabel('Probability of a World Record Being Broken');
ylabel('Weight of xbeta');

figure();
scatter(vars(3,:),vars(6,:),'k.');
xlabel('Expected Spending on the Event Excluding Prize Money (Euros)');
ylabel('Weight of xbeta');

figure();
scatter(vars(4,:),vars(6,:),'g.');
xlabel('Budget for the Event (Euros)');
ylabel('Weight of xbeta');

figure();
scatter(vars(5,:),vars(6,:),'b.');
xlabel('Insurance Operating Cost per Euro Earned as Income');
ylabel('Weight of xbeta');

%% analysis for xd

for i=1:reps
 b=normrnd(25000,2500);
 q=normrnd(.0469,.00469);
 s=normrnd(338000,33800);
 beta=normrnd(340000,34000);
 d=normrnd(.1559,.01559);

 vars(1,i)=b;
 vars(2,i)=q;
 vars(3,i)=s;
 vars(4,i)=beta;
 vars(5,i)=d;
 vars(6,i)=subs(xd);

end

xdb=corrcoef(vars(1,:),vars(6,:));
xdq=corrcoef(vars(2,:),vars(6,:));
xds=corrcoef(vars(3,:),vars(6,:));
xdbeta=corrcoef(vars(4,:),vars(6,:));
xdd=corrcoef(vars(5,:),vars(6,:));

figure();
scatter(vars(1,:),vars(6,:),'r.');
xlabel('Prize Money (Euros)');
ylabel('Weight of xd');

figure();
scatter(vars(2,:),vars(6,:),'m.');
xlabel('Probability of a World Record Being Broken');
ylabel('Weight of xd');

figure();
scatter(vars(3,:),vars(6,:),'k.');
xlabel('Expected Spending on the Event Excluding Prize Money (Euros)');
ylabel('Weight of xd');

figure();
scatter(vars(4,:),vars(6,:),'g.');
xlabel('Budget for the Event (Euros)');
ylabel('Weight of xd');

figure();
scatter(vars(5,:),vars(6,:),'b.');
xlabel('Insurance Operating Cost per Euro Earned as Income');
ylabel('Weight of xd');

MATLAB Program 6: Using Deductibles

clear all

b=25000;
t=1;
beta=200000;
s=190000;
d=.127;

qs=[0.05,0.1508,0.1462,0.0396,0.0976,0.1244,0.1120,0.1417,0.0514,0.0899,0.0865,0.0650,
0.0410,0.0885,0.0816,0.0566,0.0506,0.0673,0.0724,0.0752,0.1428571429,0.1305263158,0.05
684210526,0.07578947368,0.1178947368,0.1075268817,0.1170212766,0.44,0.02765957447,0.07
474747475,0.2086956522,0.08333333333,0.08666666667,0.1021276596,0.06,0.04888888889,0.0
7843137255,0.09574468085,0.05647058824,0.0875];
syms x q
rd=(b-x)*q*t*(1+(.102+d)/(.898-d)+((((b*q-q*x)/(.898-d)))*(s+q*x))/((b-x)*q*(b-x))*x/b
eta);

disp('got to loop');
for i=1:length(qs)

 i

 q=qs(i);
 x=linspace(0,b,b*1000);
 f= @(x) subs(rd);
 [minx(i),~]=fminbnd(f,0,b);

end

User-Facing Programs

Question 3:

Objective-C Code for User-Facing Program #1: Prize Indemnification Insurance Risk Calculator

immc2016021AppDelegate.h
// immc5538AppDelegate.h
// IMMC 2016 -- Team 2016021
//
// Created by [name redacted] on 3/27/16.
// Copyright (c) 2016 IMMC Team 2016021. All rights
reserved. //

#import <Cocoa/Cocoa.h>

@interface immc5538AppDelegate : NSObject <NSApplicationDelegate> {

 IBOutlet NSTextField *b;
 IBOutlet NSTextField *q;
 IBOutlet NSTextField *t;
 IBOutlet NSTextField *e;
 IBOutlet NSTextField *s;
 IBOutlet NSTextField *beta;

 IBOutlet NSTextField *result;

}

@property (assign) IBOutlet NSWindow *window;

- (IBAction)computerisk:(id)sender;
- (IBAction)reset:(id)sender;

@end

immc2016021AppDelegate.m
// immc2016021AppDelegate.m
// IMMC 2016 -- Team 2016021
//
// Created by [name redacted] on 3/27/16.
// Copyright (c) 2016 IMMC Team 2016021. All rights
reserved. //

#import "immc5538AppDelegate.h"

@implementation immc5538AppDelegate

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification
{

 [result setStringValue:@""];
 [result display];

 [b setStringValue:@""];
 [b display];

 [q setStringValue:@""];
 [q display];

 [t setStringValue:@""];
 [t display];

 [e setStringValue:@""];
 [e display];

 [s setStringValue:@""];
 [s display];

 [beta setStringValue:@""];
 [beta display];

}

- (IBAction)computerisk:(id)sender {

 //Note to IMMC judges: all variables used in this code are consistent with the
variables we use in our paper. Therefore, you may refer to the variable definition
statement at the top of our paper for the definition of variables used in this code.

 //Capture text input into NSStrings

 NSString *bstring = [NSString stringWithFormat:@"%@", [b stringValue]];
 NSString *qstring = [NSString stringWithFormat:@"%@", [q stringValue]];
 NSString *tstring = [NSString stringWithFormat:@"%@", [t stringValue]];
 NSString *estring = [NSString stringWithFormat:@"%@", [e stringValue]];
 NSString *sstring = [NSString stringWithFormat:@"%@", [s stringValue]];
 NSString *betastring = [NSString stringWithFormat:@"%@", [beta stringValue]];

 //Turn the newly created NSStrings into floats

 float bfloat = [bstring floatValue];
 float qfloat = [qstring floatValue];
 float tfloat = [tstring floatValue];
 float efloat = [estring floatValue];
 float sfloat = [sstring floatValue];
 float betafloat = [betastring floatValue];

 //Compute risk
 float a;
 float m;
 float riskwithinsurance;
 float riskwithoutinsurance;

 float gamma;

 a = qfloat*bfloat; //average cost of the bonus

 m = efloat - (qfloat * bfloat); //cost of the premium minus the average cost of
the bonus equals excess cost added to the premium by the insurance company

 gamma = m * (sfloat + a)/(a*bfloat);

 riskwithoutinsurance = a*tfloat*(1+gamma*(bfloat / betafloat));
 riskwithinsurance = a*tfloat*(1+m/a);

 //Compute relative financial exposure

 float relativefinancialexposure;

 if (riskwithinsurance < riskwithoutinsurance) {

 relativefinancialexposure =
(riskwithoutinsurance-riskwithinsurance)/riskwithinsurance*100;

 NSString *resultString = [NSString stringWithFormat:@"Buy
insurance!\nFinancial exposure difference: %.2f%%.",relativefinancialexposure];

 [result setStringValue:resultString];
 [result display];

 }

 else

 if (riskwithoutinsurance < riskwithinsurance) {

 relativefinancialexposure =
(riskwithoutinsurance-riskwithinsurance)/riskwithinsurance*100;

 NSString *resultString = [NSString stringWithFormat:@"Do not buy
insurance!\n Financial exposure difference: %.2f%%.",relativefinancialexposure];

 [result setStringValue:resultString];
 [result display];

 }

 else

 if (riskwithoutinsurance == riskwithinsurance) {

 [result setStringValue:@"The risks are equal. Use your judgement to
determine the best option."];

 [result display];

 }

 else

 [result setStringValue:@"Error"];
 [result display];

}

- (IBAction)reset:(id)sender {

 [result setStringValue:@""];
 [result display];

 [b setStringValue:@""];
 [b display];

 [q setStringValue:@""];
 [q display];

 [t setStringValue:@""];
 [t display];

 [e setStringValue:@""];
 [e display];

 [s setStringValue:@""];
 [s display];

 [beta setStringValue:@""];
 [beta display];

}
@end

Question 4:

Objective-C Code for User-Facing Program #2: Weight Calculations

immc2016021AppDelegate.h
// immc2016021AppDelegate.h
// IMMC 2016 -- Team 2016021 Weighting
//
// Created by [name redacted] on 3/27/16.
// Copyright (c) 2016 IMMC Team 2016021. All rights
reserved. //

#import <Cocoa/Cocoa.h>

@interface immc5538AppDelegate : NSObject <NSApplicationDelegate> {

 IBOutlet NSTextField *b;
 IBOutlet NSTextField *q;

 IBOutlet NSTextField *s;
 IBOutlet NSTextField *beta;

 IBOutlet NSTextField *resultb;
 IBOutlet NSTextField *resultq;
 IBOutlet NSTextField *resultd;
 IBOutlet NSTextField *results;
 IBOutlet NSTextField *resultbeta;

 IBOutlet NSPopUpButton *continentselector;

}

@property (assign) IBOutlet NSWindow *window;

- (IBAction)computeweights:(id)sender;
- (IBAction)reset:(id)sender;

@end

immc2016021AppDelegate.m
// immc2016021AppDelegate.m
// IMMC 2016 -- Team 2016021 Weighting
//
// Created by [name redacted] on 3/27/16.
// Copyright (c) 2016 IMMC Team 2016021. All rights
reserved. //

#import "immc5538AppDelegate.h"

@implementation immc5538AppDelegate

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification
{

 [resultb setStringValue:@""];
 [resultb display];

 [resultq setStringValue:@""];
 [resultq display];

 [results setStringValue:@""];
 [results display];

 [resultd setStringValue:@""];
 [resultd display];

 [resultbeta setStringValue:@""];
 [resultbeta display];

 [b setStringValue:@""];
 [b display];

 [q setStringValue:@""];
 [q display];

 [s setStringValue:@""];
 [s display];

 [beta setStringValue:@""];
 [beta display];

 NSString *africa = @"Africa";

 NSString *asia = @"Asia";

 NSString *australia = @"Australia";

 NSString *europe = @"Europe";

 NSString *northamerica = @"North America";

 NSString *southamerica = @"South America";

 NSMutableArray *continentArray;

 continentArray= [NSMutableArray arrayWithObjects: africa, asia, australia, europe,
northamerica, southamerica, nil];

 [continentselector removeAllItems];

 [continentselector addItemsWithTitles: continentArray];

}

- (IBAction)computeweights:(id)sender {

 //Note to IMMC judges: all variables used in this code are consistent with the
variables we use in our paper. Therefore, you may refer to the variable definition
statement at the top of our paper for the definition of variables used in this code.

 //Capture the user's continent selection to determine d
 [[continentselector itemAtIndex:0]setTag:0];
 [[continentselector itemAtIndex:1]setTag:1];
 [[continentselector itemAtIndex:2]setTag:2];
 [[continentselector itemAtIndex:3]setTag:3];
 [[continentselector itemAtIndex:4]setTag:4];
 [[continentselector itemAtIndex:5]setTag:5];

 NSInteger continentSelected = [[continentselector selectedItem]tag]; //Store that
value in a variable continentSelected

 //Capture text input into NSStrings

 NSString *bstring = [NSString stringWithFormat:@"%@", [b stringValue]];
 NSString *qstring = [NSString stringWithFormat:@"%@", [q stringValue]];
 NSString *sstring = [NSString stringWithFormat:@"%@", [s stringValue]];
 NSString *betastring = [NSString stringWithFormat:@"%@", [beta stringValue]];

 //Turn the newly created NSStrings into floats

 float bfloat = [bstring floatValue];
 float qfloat = [qstring floatValue];
 float sfloat = [sstring floatValue];
 float betafloat = [betastring floatValue];

 //Compute weights

 float a;

 a = qfloat*bfloat; //average cost of the bonus

 float dfloat;

 if (continentSelected == 0) {

 //Use the d ratio for African insurance companies

 dfloat = .1236;
 }

 if (continentSelected == 1) {

 //Use the d ratio for Asian insurance companies

 dfloat = .1564;
 }

 if (continentSelected == 2) {

 //Use the d ratio for Australian insurance companies

 dfloat = .0783;
 }

 if (continentSelected == 3) {

 //Use the d ratio for European insurance companies

 dfloat = .1559;
 }

 if (continentSelected == 4) {

 //Use the d ratio for North American insurance companies

 dfloat = .127;
 }

 if (continentSelected == 5) {

 //Use the d ratio for South American insurance companies

 dfloat = .1613;
 }

 //Calculate unstandardized weights

 float xb;
 xb =

fabsf((2*(bfloat*qfloat+((sfloat-betafloat)/2))*(dfloat+.102)*qfloat)/(betafloat*(dflo
at-.898)));

 float xq;
 xq =

fabsf((2*(bfloat*qfloat+((sfloat-betafloat)/2))*(dfloat+.102)*bfloat)/(betafloat*(dflo
at-.898)));

 float xbeta;
 xbeta =

fabsf(((-1)*bfloat*(dfloat+.102)*qfloat*(sfloat+bfloat*qfloat))/(betafloat*betafloat*(
dfloat-.898)));

 float xd;
 xd =

fabsf((-1*bfloat*qfloat*(sfloat+bfloat*qfloat-betafloat))/((dfloat-.898)*(dfloat-.898)
*betafloat));

 float xs;
 xs = fabsf((bfloat*(dfloat+.102)*qfloat)/(betafloat*(dfloat-.898)));

 //Calculate sum of unstandardized weights

 float sumofunstandardizedweights;
 sumofunstandardizedweights = xb+xq+xd+xs+xbeta;

 //Standardize the weights

 float xbstd;
 xbstd = xb/sumofunstandardizedweights;
 xbstd = xbstd*100;

 float xqstd;
 xqstd = xq/sumofunstandardizedweights;
 xqstd = xqstd*100;

 float xdstd;
 xdstd = xd/sumofunstandardizedweights;
 xdstd = xdstd*100;

 float xsstd;
 xsstd = xs/sumofunstandardizedweights;
 xsstd = xsstd*100;

 float xbetastd;
 xbetastd = xbeta/sumofunstandardizedweights;
 xbetastd = xbetastd*100;

 //Create text output for the user

 NSString *resultbstring = [NSString stringWithFormat:@"The weight given to the
total prize value should be %f%%",xbstd];

 [resultb setStringValue:resultbstring];
 [resultb display];

 NSString *resultqstring = [NSString stringWithFormat:@"The weight given to the
probability of record-breaking should be %f%%",xqstd];

 [resultq setStringValue:resultqstring];
 [resultq display];

 NSString *resultdstring = [NSString stringWithFormat:@"The weight given to the
operating costs per Euros earned as income should be %f%%",xdstd];

 [resultd setStringValue:resultdstring];
 [resultd display];

 NSString *resultsstring = [NSString stringWithFormat:@"The weight given to the
total spending should be %f%%",xsstd];

 [results setStringValue:resultsstring];
 [results display];

 NSString *resultbetastring = [NSString stringWithFormat:@"The weight given to the
total budget should be %f%%",xbetastd];

 [resultbeta setStringValue:resultbetastring];
 [resultbeta display];

}

- (IBAction)reset:(id)sender {

 [resultb setStringValue:@""];
 [resultb display];

 [resultq setStringValue:@""];
 [resultq display];

 [results setStringValue:@""];
 [results display];

 [resultd setStringValue:@""];

 [resultd display];

 [resultbeta setStringValue:@""];
 [resultbeta display];

 [b setStringValue:@""];
 [b display];

 [q setStringValue:@""];
 [q display];

 [s setStringValue:@""];
 [s display];

 [beta setStringValue:@""];
 [beta display];

}
@end

Question 5:

Objective-C Code for User-Facing Program #3: Decision-Scheme Automation for 40 Events

immc2016021AppDelegate.h
// immc2016021AppDelegate.h
// IMMC 2016 -- Team 2016021 Question 5
//
// Created by [name redacted] on 3/28/16.
// Copyright (c) 2016 IMMC Team 2016021. All rights
reserved. //

#import <Cocoa/Cocoa.h>

@interface immc5538AppDelegate : NSObject <NSApplicationDelegate> {

 IBOutlet NSTextField *s;
 IBOutlet NSTextField *beta;

 //Declare IBOutlets for men's events

 IBOutlet NSTextField *bm1;
 IBOutlet NSTextField *qm1;
 IBOutlet NSTextField *em1;

 IBOutlet NSTextField *bm2;
 IBOutlet NSTextField *qm2;
 IBOutlet NSTextField *em2;

 IBOutlet NSTextField *bm3;
 IBOutlet NSTextField *qm3;
 IBOutlet NSTextField *em3;

 IBOutlet NSTextField *bm4;
 IBOutlet NSTextField *qm4;

 IBOutlet NSTextField *em4;

 IBOutlet NSTextField *bm5;
 IBOutlet NSTextField *qm5;
 IBOutlet NSTextField *em5;

 IBOutlet NSTextField *bm6;
 IBOutlet NSTextField *qm6;
 IBOutlet NSTextField *em6;

 IBOutlet NSTextField *bm7;
 IBOutlet NSTextField *qm7;
 IBOutlet NSTextField *em7;

 IBOutlet NSTextField *bm8;
 IBOutlet NSTextField *qm8;
 IBOutlet NSTextField *em8;

 IBOutlet NSTextField *bm9;
 IBOutlet NSTextField *qm9;
 IBOutlet NSTextField *em9;

 IBOutlet NSTextField *bm10;
 IBOutlet NSTextField *qm10;
 IBOutlet NSTextField *em10;

 IBOutlet NSTextField *bm11;
 IBOutlet NSTextField *qm11;
 IBOutlet NSTextField *em11;

 IBOutlet NSTextField *bm12;
 IBOutlet NSTextField *qm12;
 IBOutlet NSTextField *em12;

 IBOutlet NSTextField *bm13;
 IBOutlet NSTextField *qm13;
 IBOutlet NSTextField *em13;

 IBOutlet NSTextField *bm14;
 IBOutlet NSTextField *qm14;
 IBOutlet NSTextField *em14;

 IBOutlet NSTextField *bm15;
 IBOutlet NSTextField *qm15;
 IBOutlet NSTextField *em15;

 IBOutlet NSTextField *bm16;
 IBOutlet NSTextField *qm16;
 IBOutlet NSTextField *em16;

 IBOutlet NSTextField *bm17;
 IBOutlet NSTextField *qm17;
 IBOutlet NSTextField *em17;

 IBOutlet NSTextField *bm18;
 IBOutlet NSTextField *qm18;
 IBOutlet NSTextField *em18;

 IBOutlet NSTextField *bm19;
 IBOutlet NSTextField *qm19;
 IBOutlet NSTextField *em19;

 IBOutlet NSTextField *bm20;
 IBOutlet NSTextField *qm20;
 IBOutlet NSTextField *em20;

 //Declare IBOutlets for women's events

 IBOutlet NSTextField *bw1;
 IBOutlet NSTextField *qw1;
 IBOutlet NSTextField *ew1;

 IBOutlet NSTextField *bw2;
 IBOutlet NSTextField *qw2;
 IBOutlet NSTextField *ew2;

 IBOutlet NSTextField *bw3;
 IBOutlet NSTextField *qw3;
 IBOutlet NSTextField *ew3;

 IBOutlet NSTextField *bw4;
 IBOutlet NSTextField *qw4;
 IBOutlet NSTextField *ew4;

 IBOutlet NSTextField *bw5;
 IBOutlet NSTextField *qw5;
 IBOutlet NSTextField *ew5;

 IBOutlet NSTextField *bw6;
 IBOutlet NSTextField *qw6;
 IBOutlet NSTextField *ew6;

 IBOutlet NSTextField *bw7;
 IBOutlet NSTextField *qw7;
 IBOutlet NSTextField *ew7;

 IBOutlet NSTextField *bw8;
 IBOutlet NSTextField *qw8;
 IBOutlet NSTextField *ew8;

 IBOutlet NSTextField *bw9;
 IBOutlet NSTextField *qw9;
 IBOutlet NSTextField *ew9;

 IBOutlet NSTextField *bw10;
 IBOutlet NSTextField *qw10;
 IBOutlet NSTextField *ew10;

 IBOutlet NSTextField *bw11;
 IBOutlet NSTextField *qw11;
 IBOutlet NSTextField *ew11;

 IBOutlet NSTextField *bw12;
 IBOutlet NSTextField *qw12;
 IBOutlet NSTextField *ew12;

 IBOutlet NSTextField *bw13;
 IBOutlet NSTextField *qw13;
 IBOutlet NSTextField *ew13;

 IBOutlet NSTextField *bw14;
 IBOutlet NSTextField *qw14;
 IBOutlet NSTextField *ew14;

 IBOutlet NSTextField *bw15;
 IBOutlet NSTextField *qw15;
 IBOutlet NSTextField *ew15;

 IBOutlet NSTextField *bw16;
 IBOutlet NSTextField *qw16;
 IBOutlet NSTextField *ew16;

 IBOutlet NSTextField *bw17;
 IBOutlet NSTextField *qw17;
 IBOutlet NSTextField *ew17;

 IBOutlet NSTextField *bw18;
 IBOutlet NSTextField *qw18;
 IBOutlet NSTextField *ew18;

 IBOutlet NSTextField *bw19;
 IBOutlet NSTextField *qw19;
 IBOutlet NSTextField *ew19;

 IBOutlet NSTextField *bw20;
 IBOutlet NSTextField *qw20;
 IBOutlet NSTextField *ew20;

}

@property (assign) IBOutlet NSWindow *window;

- (IBAction)reset:(id)sender;
- (IBAction)go:(id)sender;

@end

immc2016021AppDelegate.m
// immc2016021AppDelegate.m
// IMMC 2016 -- Team 2016021
Question 5 //

// Created by [name redacted] on 3/28/16.
// Copyright (c) 2016 IMMC Team 2016021. All rights
reserved. //

#import "immc2016021AppDelegate.h"

@implementation immc2016021AppDelegate

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification
{

}

- (IBAction) go:(id)sender {

 NSString *sstring = [NSString stringWithFormat:@"%@", [s stringValue]];
 NSString *betastring = [NSString stringWithFormat:@"%@", [beta stringValue]];

 float sfloat = [sstring floatValue];
 float betafloat = [betastring floatValue];

 //Convert the men's text inputs into NSStrings

 NSString *bm1string = [NSString stringWithFormat:@"%@", [bm1 stringValue]];
 NSString *qm1string = [NSString stringWithFormat:@"%@", [qm1 stringValue]];
 NSString *em1string = [NSString stringWithFormat:@"%@", [em1 stringValue]];

 NSString *bm2string = [NSString stringWithFormat:@"%@", [bm2 stringValue]];
 NSString *qm2string = [NSString stringWithFormat:@"%@", [qm2 stringValue]];
 NSString *em2string = [NSString stringWithFormat:@"%@", [em2 stringValue]];

 NSString *bm3string = [NSString stringWithFormat:@"%@", [bm3 stringValue]];
 NSString *qm3string = [NSString stringWithFormat:@"%@", [qm3 stringValue]];
 NSString *em3string = [NSString stringWithFormat:@"%@", [em3 stringValue]];

 NSString *bm4string = [NSString stringWithFormat:@"%@", [bm4 stringValue]];
 NSString *qm4string = [NSString stringWithFormat:@"%@", [qm4 stringValue]];
 NSString *em4string = [NSString stringWithFormat:@"%@", [em4 stringValue]];

 NSString *bm5string = [NSString stringWithFormat:@"%@", [bm5 stringValue]];
 NSString *qm5string = [NSString stringWithFormat:@"%@", [qm5 stringValue]];
 NSString *em5string = [NSString stringWithFormat:@"%@", [em5 stringValue]];

 NSString *bm6string = [NSString stringWithFormat:@"%@", [bm6 stringValue]];
 NSString *qm6string = [NSString stringWithFormat:@"%@", [qm6 stringValue]];
 NSString *em6string = [NSString stringWithFormat:@"%@", [em6 stringValue]];

 NSString *bm7string = [NSString stringWithFormat:@"%@", [bm7 stringValue]];
 NSString *qm7string = [NSString stringWithFormat:@"%@", [qm7 stringValue]];
 NSString *em7string = [NSString stringWithFormat:@"%@", [em7 stringValue]];

 NSString *bm8string = [NSString stringWithFormat:@"%@", [bm8 stringValue]];
 NSString *qm8string = [NSString stringWithFormat:@"%@", [qm8 stringValue]];

 Appendix Page 46

 NSString *em8string = [NSString stringWithFormat:@"%@", [em8 stringValue]];

 NSString *bm9string = [NSString stringWithFormat:@"%@", [bm9 stringValue]];
 NSString *qm9string = [NSString stringWithFormat:@"%@", [qm9 stringValue]];
 NSString *em9string = [NSString stringWithFormat:@"%@", [em9 stringValue]];

 NSString *bm10string = [NSString stringWithFormat:@"%@", [bm10 stringValue]];
 NSString *qm10string = [NSString stringWithFormat:@"%@", [qm10 stringValue]];
 NSString *em10string = [NSString stringWithFormat:@"%@", [em10 stringValue]];

 NSString *bm11string = [NSString stringWithFormat:@"%@", [bm11 stringValue]];
 NSString *qm11string = [NSString stringWithFormat:@"%@", [qm11 stringValue]];
 NSString *em11string = [NSString stringWithFormat:@"%@", [em11 stringValue]];

 NSString *bm12string = [NSString stringWithFormat:@"%@", [bm12 stringValue]];
 NSString *qm12string = [NSString stringWithFormat:@"%@", [qm12 stringValue]];
 NSString *em12string = [NSString stringWithFormat:@"%@", [em12 stringValue]];

 NSString *bm13string = [NSString stringWithFormat:@"%@", [bm13 stringValue]];
 NSString *qm13string = [NSString stringWithFormat:@"%@", [qm13 stringValue]];
 NSString *em13string = [NSString stringWithFormat:@"%@", [em13 stringValue]];

 NSString *bm14string = [NSString stringWithFormat:@"%@", [bm14 stringValue]];
 NSString *qm14string = [NSString stringWithFormat:@"%@", [qm14 stringValue]];
 NSString *em14string = [NSString stringWithFormat:@"%@", [em14 stringValue]];

 NSString *bm15string = [NSString stringWithFormat:@"%@", [bm15 stringValue]];
 NSString *qm15string = [NSString stringWithFormat:@"%@", [qm15 stringValue]];
 NSString *em15string = [NSString stringWithFormat:@"%@", [em15 stringValue]];

 NSString *bm16string = [NSString stringWithFormat:@"%@", [bm16 stringValue]];
 NSString *qm16string = [NSString stringWithFormat:@"%@", [qm16 stringValue]];
 NSString *em16string = [NSString stringWithFormat:@"%@", [em16 stringValue]];

 NSString *bm17string = [NSString stringWithFormat:@"%@", [bm17 stringValue]];
 NSString *qm17string = [NSString stringWithFormat:@"%@", [qm17 stringValue]];
 NSString *em17string = [NSString stringWithFormat:@"%@", [em17 stringValue]];

 NSString *bm18string = [NSString stringWithFormat:@"%@", [bm18 stringValue]];
 NSString *qm18string = [NSString stringWithFormat:@"%@", [qm18 stringValue]];
 NSString *em18string = [NSString stringWithFormat:@"%@", [em18 stringValue]];

 NSString *bm19string = [NSString stringWithFormat:@"%@", [bm19 stringValue]];
 NSString *qm19string = [NSString stringWithFormat:@"%@", [qm19 stringValue]];
 NSString *em19string = [NSString stringWithFormat:@"%@", [em19 stringValue]];

 NSString *bm20string = [NSString stringWithFormat:@"%@", [bm20 stringValue]];
 NSString *qm20string = [NSString stringWithFormat:@"%@", [qm20 stringValue]];
 NSString *em20string = [NSString stringWithFormat:@"%@", [em20 stringValue]];

 //Conver the women's text inputs into NSStrings

 NSString *bw1string = [NSString stringWithFormat:@"%@", [bw1 stringValue]];

 NSString *qw1string = [NSString stringWithFormat:@"%@", [qw1 stringValue]];
 NSString *ew1string = [NSString stringWithFormat:@"%@", [ew1 stringValue]];

 NSString *bw2string = [NSString stringWithFormat:@"%@", [bw2 stringValue]];
 NSString *qw2string = [NSString stringWithFormat:@"%@", [qw2 stringValue]];
 NSString *ew2string = [NSString stringWithFormat:@"%@", [ew2 stringValue]];

 NSString *bw3string = [NSString stringWithFormat:@"%@", [bw3 stringValue]];
 NSString *qw3string = [NSString stringWithFormat:@"%@", [qw3 stringValue]];
 NSString *ew3string = [NSString stringWithFormat:@"%@", [ew3 stringValue]];

 NSString *bw4string = [NSString stringWithFormat:@"%@", [bw4 stringValue]];
 NSString *qw4string = [NSString stringWithFormat:@"%@", [qw4 stringValue]];
 NSString *ew4string = [NSString stringWithFormat:@"%@", [ew4 stringValue]];

 NSString *bw5string = [NSString stringWithFormat:@"%@", [bw5 stringValue]];
 NSString *qw5string = [NSString stringWithFormat:@"%@", [qw5 stringValue]];
 NSString *ew5string = [NSString stringWithFormat:@"%@", [ew5 stringValue]];

 NSString *bw6string = [NSString stringWithFormat:@"%@", [bw6 stringValue]];
 NSString *qw6string = [NSString stringWithFormat:@"%@", [qw6 stringValue]];
 NSString *ew6string = [NSString stringWithFormat:@"%@", [ew6 stringValue]];

 NSString *bw7string = [NSString stringWithFormat:@"%@", [bw7 stringValue]];
 NSString *qw7string = [NSString stringWithFormat:@"%@", [qw7 stringValue]];
 NSString *ew7string = [NSString stringWithFormat:@"%@", [ew7 stringValue]];

 NSString *bw8string = [NSString stringWithFormat:@"%@", [bw8 stringValue]];
 NSString *qw8string = [NSString stringWithFormat:@"%@", [qw8 stringValue]];
 NSString *ew8string = [NSString stringWithFormat:@"%@", [ew8 stringValue]];

 NSString *bw9string = [NSString stringWithFormat:@"%@", [bw9 stringValue]];
 NSString *qw9string = [NSString stringWithFormat:@"%@", [qw9 stringValue]];
 NSString *ew9string = [NSString stringWithFormat:@"%@", [ew9 stringValue]];

 NSString *bw10string = [NSString stringWithFormat:@"%@", [bw10 stringValue]];
 NSString *qw10string = [NSString stringWithFormat:@"%@", [qw10 stringValue]];
 NSString *ew10string = [NSString stringWithFormat:@"%@", [ew10 stringValue]];

 NSString *bw11string = [NSString stringWithFormat:@"%@", [bw11 stringValue]];
 NSString *qw11string = [NSString stringWithFormat:@"%@", [qw11 stringValue]];
 NSString *ew11string = [NSString stringWithFormat:@"%@", [ew11 stringValue]];

 NSString *bw12string = [NSString stringWithFormat:@"%@", [bw12 stringValue]];
 NSString *qw12string = [NSString stringWithFormat:@"%@", [qw12 stringValue]];
 NSString *ew12string = [NSString stringWithFormat:@"%@", [ew12 stringValue]];

 NSString *bw13string = [NSString stringWithFormat:@"%@", [bw13 stringValue]];
 NSString *qw13string = [NSString stringWithFormat:@"%@", [qw13 stringValue]];
 NSString *ew13string = [NSString stringWithFormat:@"%@", [ew13 stringValue]];

 NSString *bw14string = [NSString stringWithFormat:@"%@", [bw14 stringValue]];
 NSString *qw14string = [NSString stringWithFormat:@"%@", [qw14 stringValue]];
 NSString *ew14string = [NSString stringWithFormat:@"%@", [ew14 stringValue]];

 NSString *bw15string = [NSString stringWithFormat:@"%@", [bw15 stringValue]];
 NSString *qw15string = [NSString stringWithFormat:@"%@", [qw15 stringValue]];
 NSString *ew15string = [NSString stringWithFormat:@"%@", [ew15 stringValue]];

 NSString *bw16string = [NSString stringWithFormat:@"%@", [bw16 stringValue]];
 NSString *qw16string = [NSString stringWithFormat:@"%@", [qw16 stringValue]];
 NSString *ew16string = [NSString stringWithFormat:@"%@", [ew16 stringValue]];

 NSString *bw17string = [NSString stringWithFormat:@"%@", [bw17 stringValue]];
 NSString *qw17string = [NSString stringWithFormat:@"%@", [qw17 stringValue]];
 NSString *ew17string = [NSString stringWithFormat:@"%@", [ew17 stringValue]];

 NSString *bw18string = [NSString stringWithFormat:@"%@", [bw18 stringValue]];
 NSString *qw18string = [NSString stringWithFormat:@"%@", [qw18 stringValue]];
 NSString *ew18string = [NSString stringWithFormat:@"%@", [ew18 stringValue]];

 NSString *bw19string = [NSString stringWithFormat:@"%@", [bw19 stringValue]];
 NSString *qw19string = [NSString stringWithFormat:@"%@", [qw19 stringValue]];
 NSString *ew19string = [NSString stringWithFormat:@"%@", [ew19 stringValue]];

 NSString *bw20string = [NSString stringWithFormat:@"%@", [bw20 stringValue]];
 NSString *qw20string = [NSString stringWithFormat:@"%@", [qw20 stringValue]];
 NSString *ew20string = [NSString stringWithFormat:@"%@", [ew20 stringValue]];

 //Convert the men's strings into floats

 float bm1float = [bm1string floatValue];
 float qm1float = [qm1string floatValue];
 float em1float = [em1string floatValue];

 float bm2float = [bm2string floatValue];
 float qm2float = [qm2string floatValue];
 float em2float = [em2string floatValue];

 float bm3float = [bm3string floatValue];
 float qm3float = [qm3string floatValue];
 float em3float = [em3string floatValue];

 float bm4float = [bm4string floatValue];
 float qm4float = [qm4string floatValue];
 float em4float = [em4string floatValue];

 float bm5float = [bm5string floatValue];
 float qm5float = [qm5string floatValue];
 float em5float = [em5string floatValue];

 float bm6float = [bm6string floatValue];
 float qm6float = [qm6string floatValue];
 float em6float = [em6string floatValue];

 float bm7float = [bm7string floatValue];
 float qm7float = [qm7string floatValue];

 Appendix Page 49

 float em7float = [em7string floatValue];

 float bm8float = [bm8string floatValue];
 float qm8float = [qm8string floatValue];
 float em8float = [em8string floatValue];

 float bm9float = [bm9string floatValue];
 float qm9float = [qm9string floatValue];
 float em9float = [em9string floatValue];

 float bm10float = [bm10string floatValue];
 float qm10float = [qm10string floatValue];
 float em10float = [em10string floatValue];

 float bm11float = [bm11string floatValue];
 float qm11float = [qm11string floatValue];
 float em11float = [em11string floatValue];

 float bm12float = [bm12string floatValue];
 float qm12float = [qm12string floatValue];
 float em12float = [em12string floatValue];

 float bm13float = [bm13string floatValue];
 float qm13float = [qm13string floatValue];
 float em13float = [em13string floatValue];

 float bm14float = [bm14string floatValue];
 float qm14float = [qm14string floatValue];
 float em14float = [em14string floatValue];

 float bm15float = [bm15string floatValue];
 float qm15float = [qm15string floatValue];
 float em15float = [em15string floatValue];

 float bm16float = [bm16string floatValue];
 float qm16float = [qm16string floatValue];
 float em16float = [em16string floatValue];

 float bm17float = [bm17string floatValue];
 float qm17float = [qm17string floatValue];
 float em17float = [em17string floatValue];

 float bm18float = [bm18string floatValue];
 float qm18float = [qm18string floatValue];
 float em18float = [em18string floatValue];

 float bm19float = [bm19string floatValue];
 float qm19float = [qm19string floatValue];
 float em19float = [em19string floatValue];

 float bm20float = [bm20string floatValue];
 float qm20float = [qm20string floatValue];
 float em20float = [em20string floatValue];

 //Convert the women's strings into floats

 float bw1float = [bw1string floatValue];
 float qw1float = [qw1string floatValue];
 float ew1float = [ew1string floatValue];

 float bw2float = [bw2string floatValue];
 float qw2float = [qw2string floatValue];
 float ew2float = [ew2string floatValue];

 float bw3float = [bw3string floatValue];
 float qw3float = [qw3string floatValue];
 float ew3float = [ew3string floatValue];

 float bw4float = [bw4string floatValue];
 float qw4float = [qw4string floatValue];
 float ew4float = [ew4string floatValue];

 float bw5float = [bw5string floatValue];
 float qw5float = [qw5string floatValue];
 float ew5float = [ew5string floatValue];

 float bw6float = [bw6string floatValue];
 float qw6float = [qw6string floatValue];
 float ew6float = [ew6string floatValue];

 float bw7float = [bw7string floatValue];
 float qw7float = [qw7string floatValue];
 float ew7float = [ew7string floatValue];

 float bw8float = [bw8string floatValue];
 float qw8float = [qw8string floatValue];
 float ew8float = [ew8string floatValue];

 float bw9float = [bw9string floatValue];
 float qw9float = [qw9string floatValue];
 float ew9float = [ew9string floatValue];

 float bw10float = [bw10string floatValue];
 float qw10float = [qw10string floatValue];
 float ew10float = [ew10string floatValue];

 float bw11float = [bw11string floatValue];
 float qw11float = [qw11string floatValue];
 float ew11float = [ew11string floatValue];

 float bw12float = [bw12string floatValue];
 float qw12float = [qw12string floatValue];
 float ew12float = [ew12string floatValue];

 float bw13float = [bw13string floatValue];

 float qw13float = [qw13string floatValue];
 float ew13float = [ew13string floatValue];

 float bw14float = [bw14string floatValue];
 float qw14float = [qw14string floatValue];
 float ew14float = [ew14string floatValue];

 float bw15float = [bw15string floatValue];
 float qw15float = [qw15string floatValue];
 float ew15float = [ew15string floatValue];

 float bw16float = [bw16string floatValue];
 float qw16float = [qw16string floatValue];
 float ew16float = [ew16string floatValue];

 float bw17float = [bw17string floatValue];
 float qw17float = [qw17string floatValue];
 float ew17float = [ew17string floatValue];

 float bw18float = [bw18string floatValue];
 float qw18float = [qw18string floatValue];
 float ew18float = [ew18string floatValue];

 float bw19float = [bw19string floatValue];
 float qw19float = [qw19string floatValue];
 float ew19float = [ew19string floatValue];

 float bw20float = [bw20string floatValue];
 float qw20float = [qw20string floatValue];
 float ew20float = [ew20string floatValue];

 //Declare the variables we will be using in our calculations

 float am1;
 float am2;
 float am3;
 float am4;
 float am5;
 float am6;
 float am7;
 float am8;
 float am9;
 float am10;
 float am11;
 float am12;
 float am13;
 float am14;
 float am15;
 float am16;
 float am17;
 float am18;
 float am19;

 float am20;

 float aw1;
 float aw2;
 float aw3;
 float aw4;
 float aw5;
 float aw6;
 float aw7;
 float aw8;
 float aw9;
 float aw10;
 float aw11;
 float aw12;
 float aw13;
 float aw14;
 float aw15;
 float aw16;
 float aw17;
 float aw18;
 float aw19;
 float aw20;

 float mm1;
 float mm2;
 float mm3;
 float mm4;
 float mm5;
 float mm6;
 float mm7;
 float mm8;
 float mm9;
 float mm10;
 float mm11;
 float mm12;
 float mm13;
 float mm14;
 float mm15;
 float mm16;
 float mm17;
 float mm18;
 float mm19;
 float mm20;

 float mw1;
 float mw2;
 float mw3;
 float mw4;
 float mw5;
 float mw6;
 float mw7;
 float mw8;
 float mw9;
 float mw10;

 float mw11;
 float mw12;
 float mw13;
 float mw14;
 float mw15;
 float mw16;
 float mw17;
 float mw18;
 float mw19;
 float mw20;

 float gammam1;
 float gammam2;
 float gammam3;
 float gammam4;
 float gammam5;
 float gammam6;
 float gammam7;
 float gammam8;
 float gammam9;
 float gammam10;
 float gammam11;
 float gammam12;
 float gammam13;
 float gammam14;
 float gammam15;
 float gammam16;
 float gammam17;
 float gammam18;
 float gammam19;
 float gammam20;

 float gammaw1;
 float gammaw2;
 float gammaw3;
 float gammaw4;
 float gammaw5;
 float gammaw6;
 float gammaw7;
 float gammaw8;
 float gammaw9;
 float gammaw10;
 float gammaw11;
 float gammaw12;
 float gammaw13;
 float gammaw14;
 float gammaw15;
 float gammaw16;
 float gammaw17;
 float gammaw18;
 float gammaw19;
 float gammaw20;

 float riskwithinsurancem1;

 float riskwithinsurancem2;
 float riskwithinsurancem3;
 float riskwithinsurancem4;
 float riskwithinsurancem5;
 float riskwithinsurancem6;
 float riskwithinsurancem7;
 float riskwithinsurancem8;
 float riskwithinsurancem9;
 float riskwithinsurancem10;
 float riskwithinsurancem11;
 float riskwithinsurancem12;
 float riskwithinsurancem13;
 float riskwithinsurancem14;
 float riskwithinsurancem15;
 float riskwithinsurancem16;
 float riskwithinsurancem17;
 float riskwithinsurancem18;
 float riskwithinsurancem19;
 float riskwithinsurancem20;

 float riskwithinsurancew1;
 float riskwithinsurancew2;
 float riskwithinsurancew3;
 float riskwithinsurancew4;
 float riskwithinsurancew5;
 float riskwithinsurancew6;
 float riskwithinsurancew7;
 float riskwithinsurancew8;
 float riskwithinsurancew9;
 float riskwithinsurancew10;
 float riskwithinsurancew11;
 float riskwithinsurancew12;
 float riskwithinsurancew13;
 float riskwithinsurancew14;
 float riskwithinsurancew15;
 float riskwithinsurancew16;
 float riskwithinsurancew17;
 float riskwithinsurancew18;
 float riskwithinsurancew19;
 float riskwithinsurancew20;

 float riskwithoutinsurancem1;
 float riskwithoutinsurancem2;
 float riskwithoutinsurancem3;
 float riskwithoutinsurancem4;
 float riskwithoutinsurancem5;
 float riskwithoutinsurancem6;
 float riskwithoutinsurancem7;
 float riskwithoutinsurancem8;
 float riskwithoutinsurancem9;
 float riskwithoutinsurancem10;
 float riskwithoutinsurancem11;
 float riskwithoutinsurancem12;
 float riskwithoutinsurancem13;

 float riskwithoutinsurancem14;
 float riskwithoutinsurancem15;
 float riskwithoutinsurancem16;
 float riskwithoutinsurancem17;
 float riskwithoutinsurancem18;
 float riskwithoutinsurancem19;
 float riskwithoutinsurancem20;

 float riskwithoutinsurancew1;
 float riskwithoutinsurancew2;
 float riskwithoutinsurancew3;
 float riskwithoutinsurancew4;
 float riskwithoutinsurancew5;
 float riskwithoutinsurancew6;
 float riskwithoutinsurancew7;
 float riskwithoutinsurancew8;
 float riskwithoutinsurancew9;
 float riskwithoutinsurancew10;
 float riskwithoutinsurancew11;
 float riskwithoutinsurancew12;
 float riskwithoutinsurancew13;
 float riskwithoutinsurancew14;
 float riskwithoutinsurancew15;
 float riskwithoutinsurancew16;
 float riskwithoutinsurancew17;
 float riskwithoutinsurancew18;
 float riskwithoutinsurancew19;
 float riskwithoutinsurancew20;

 float riskdifferencem1;
 float riskdifferencem2;
 float riskdifferencem3;
 float riskdifferencem4;
 float riskdifferencem5;
 float riskdifferencem6;
 float riskdifferencem7;
 float riskdifferencem8;
 float riskdifferencem9;
 float riskdifferencem10;
 float riskdifferencem11;
 float riskdifferencem12;
 float riskdifferencem13;
 float riskdifferencem14;
 float riskdifferencem15;
 float riskdifferencem16;
 float riskdifferencem17;
 float riskdifferencem18;
 float riskdifferencem19;
 float riskdifferencem20;

 float riskdifferencew1;
 float riskdifferencew2;
 float riskdifferencew3;
 float riskdifferencew4;

 float riskdifferencew5;
 float riskdifferencew6;
 float riskdifferencew7;
 float riskdifferencew8;
 float riskdifferencew9;
 float riskdifferencew10;
 float riskdifferencew11;
 float riskdifferencew12;
 float riskdifferencew13;
 float riskdifferencew14;
 float riskdifferencew15;
 float riskdifferencew16;
 float riskdifferencew17;
 float riskdifferencew18;
 float riskdifferencew19;
 float riskdifferencew20;

 //Compute risk for all men's events

 am1 = qm1float*bm1float; //average cost of the bonus

 mm1 = em1float - am1; //cost of the premium minus the average cost of the bonus
equals excess cost added to the premium by the insurance company

 gammam1 = mm1 * (sfloat + (am1))/ (am1*bm1float);

 riskwithoutinsurancem1 = am1*(1+gammam1* (bm1float / betafloat));
 riskwithinsurancem1 = am1*(1+mm1/am1);

 am2 = qm2float*bm2float; //average cost of the bonus

 mm2 = em2float - am2; //cost of the premium minus the average cost of the bonus
equals excess cost added to the premium by the insurance company

 gammam2 = mm2 * (sfloat + (am2))/ (am2*bm2float);

 riskwithoutinsurancem2 = am2*(1+gammam2* (bm2float / betafloat));
 riskwithinsurancem2 = am2*(1+mm2/am2);

 am3 = qm3float*bm3float; //average cost of the bonus

 mm3 = em3float - am3; //cost of the premium minus the average cost of the bonus
equals excess cost added to the premium by the insurance company

 gammam3 = mm3 * (sfloat + (am3))/ (am3*bm3float);

 riskwithoutinsurancem3 = am3*(1+gammam3* (bm3float / betafloat));
 riskwithinsurancem3 = am3*(1+mm3/am3);

 am4 = qm4float*bm4float; //average cost of the bonus

 mm4 = em4float - am4; //cost of the premium minus the average cost of the bonus
equals excess cost added to the premium by the insurance company

 gammam4 = mm4 * (sfloat + (am4))/ (am4*bm4float);

 riskwithoutinsurancem4 = am4*(1+gammam4* (bm4float / betafloat));
 riskwithinsurancem4 = am4*(1+mm4/am4);

 am5 = qm5float*bm5float; //average cost of the bonus

 mm5 = em5float - am5; //cost of the premium minus the average cost of the bonus
equals excess cost added to the premium by the insurance company

 gammam5 = mm5 * (sfloat + (am5))/ (am5*bm5float);

 riskwithoutinsurancem5 = am5*(1+gammam5* (bm5float / betafloat));
 riskwithinsurancem5 = am5*(1+mm5/am5);

 am6 = qm6float*bm6float; //average cost of the bonus

 mm6 = em6float - am6; //cost of the premium minus the average cost of the bonus
equals excess cost added to the premium by the insurance company

 gammam6 = mm6 * (sfloat + (am6))/ (am6*bm6float);

 riskwithoutinsurancem6 = am6*(1+gammam6* (bm6float / betafloat));
 riskwithinsurancem6 = am6*(1+mm6/am6);

 am7 = qm7float*bm7float; //average cost of the bonus

 mm7 = em7float - am7; //cost of the premium minus the average cost of the bonus
equals excess cost added to the premium by the insurance company

 gammam7 = mm7 * (sfloat + (am7))/ (am7*bm7float);

 riskwithoutinsurancem7 = am7*(1+gammam7* (bm7float / betafloat));
 riskwithinsurancem7 = am7*(1+mm7/am7);

 am8 = qm8float*bm8float; //average cost of the bonus

 mm8 = em8float - am8; //cost of the premium minus the average cost of the bonus
equals excess cost added to the premium by the insurance company

 gammam8 = mm8 * (sfloat + (am8))/ (am8*bm8float);

 riskwithoutinsurancem8 = am8*(1+gammam8* (bm8float / betafloat));
 riskwithinsurancem8 = am8*(1+mm8/am8);

 Appendix Page 58

 am9 = qm9float*bm9float; //average cost of the bonus

 mm9 = em9float - am9; //cost of the premium minus the average cost of the bonus
equals excess cost added to the premium by the insurance company

 gammam9 = mm9 * (sfloat + (am9))/ (am9*bm9float);

 riskwithoutinsurancem9 = am9*(1+gammam9* (bm9float / betafloat));
 riskwithinsurancem9 = am9*(1+mm9/am9);

 am10 = qm10float*bm10float; //average cost of the bonus

 mm10 = em10float - am10; //cost of the premium minus the average cost of the bonus
equals excess cost added to the premium by the insurance company

 gammam10 = mm10 * (sfloat + (am10))/ (am10*bm10float);

 riskwithoutinsurancem10 = am10*(1+gammam10* (bm10float / betafloat));
 riskwithinsurancem10 = am10*(1+mm10/am10);

 am11 = qm11float*bm11float; //average cost of the bonus

 mm11 = em11float - am11; //cost of the premium minus the average cost of the bonus
equals excess cost added to the premium by the insurance company

 gammam11 = mm11 * (sfloat + (am11))/ (am11*bm11float);

 riskwithoutinsurancem11 = am11*(1+gammam11* (bm11float / betafloat));
 riskwithinsurancem11 = am11*(1+mm11/am11);

 am12 = qm12float*bm12float; //average cost of the bonus

 mm12 = em12float - am12; //cost of the premium minus the average cost of the bonus
equals excess cost added to the premium by the insurance company

 gammam12 = mm12 * (sfloat + (am12))/ (am12*bm12float);

 riskwithoutinsurancem12 = am12*(1+gammam12* (bm12float / betafloat));
 riskwithinsurancem12 = am12*(1+mm12/am12);

 am13 = qm13float*bm13float; //average cost of the bonus

 mm13 = em13float - am13; //cost of the premium minus the average cost of the bonus
equals excess cost added to the premium by the insurance company

 gammam13 = mm13 * (sfloat + (am13))/ (am13*bm13float);

 riskwithoutinsurancem13 = am13*(1+gammam13* (bm13float / betafloat));
 riskwithinsurancem13 = am13*(1+mm13/am13);

 am14 = qm14float*bm14float; //average cost of the bonus

 mm14 = em14float - am14; //cost of the premium minus the average cost of the bonus
equals excess cost added to the premium by the insurance company

 gammam14 = mm14 * (sfloat + (am14))/ (am14*bm14float);

 riskwithoutinsurancem14 = am14*(1+gammam14* (bm14float / betafloat));
 riskwithinsurancem14 = am14*(1+mm14/am14);

 am15 = qm15float*bm15float; //average cost of the bonus

 mm15 = em15float - am15; //cost of the premium minus the average cost of the bonus
equals excess cost added to the premium by the insurance company

 gammam15 = mm15 * (sfloat + (am15))/ (am15*bm15float);

 riskwithoutinsurancem15 = am15*(1+gammam15* (bm15float / betafloat));
 riskwithinsurancem15 = am15*(1+mm15/am15);

 am16 = qm16float*bm16float; //average cost of the bonus

 mm16 = em16float - am16; //cost of the premium minus the average cost of the bonus
equals excess cost added to the premium by the insurance company

 gammam16 = mm16 * (sfloat + (am16))/ (am16*bm16float);

 riskwithoutinsurancem16 = am16*(1+gammam16* (bm16float / betafloat));
 riskwithinsurancem16 = am16*(1+mm16/am16);

 am17 = qm17float*bm17float; //average cost of the bonus

 mm17 = em17float - am17; //cost of the premium minus the average cost of the bonus
equals excess cost added to the premium by the insurance company

 gammam17 = mm17 * (sfloat + (am17))/ (am17*bm17float);

 riskwithoutinsurancem17 = am17*(1+gammam17* (bm17float / betafloat));
 riskwithinsurancem17 = am17*(1+mm17/am17);

 am18 = qm18float*bm18float; //average cost of the bonus

 mm18 = em18float - am18; //cost of the premium minus the average cost of the bonus
equals excess cost added to the premium by the insurance company

 gammam18 = mm18 * (sfloat + (am18))/ (am18*bm18float);

 riskwithoutinsurancem18 = am18*(1+gammam18* (bm18float / betafloat));
 riskwithinsurancem18 = am18*(1+mm18/am18);

 am19 = qm19float*bm19float; //average cost of the bonus

 mm19 = em19float - am19; //cost of the premium minus the average cost of the bonus
equals excess cost added to the premium by the insurance company

 gammam19 = mm19 * (sfloat + (am19))/ (am19*bm19float);

 riskwithoutinsurancem19 = am19*(1+gammam19* (bm19float / betafloat));
 riskwithinsurancem19 = am19*(1+mm19/am19);

 am20 = qm20float*bm20float; //average cost of the bonus

 mm20 = em20float - am20; //cost of the premium minus the average cost of the bonus
equals excess cost added to the premium by the insurance company

 gammam20 = mm20 * (sfloat + (am20))/ (am20*bm20float);

 riskwithoutinsurancem20 = am20*(1+gammam20* (bm20float / betafloat));
 riskwithinsurancem20 = am20*(1+mm20/am20);

 //Compute risk for all women's events

 aw1 = qw1float*bw1float; //average cost of the bonus

 mw1 = ew1float - aw1; //cost of the premium minus the average cost of the bonus
equals excess cost added to the premium by the insurance company

 gammaw1 = mw1 * (sfloat + (aw1))/ (aw1*bw1float);

 riskwithoutinsurancew1 = aw1*(1+gammaw1* (bw1float / betafloat));
 riskwithinsurancew1 = aw1*(1+mw1/aw1);

 aw2 = qw2float*bw2float; //average cost of the bonus

 mw2 = ew2float - aw2; //cost of the premium minus the average cost of the bonus
equals excess cost added to the premium by the insurance company

 gammaw2 = mw2 * (sfloat + (aw2))/ (aw2*bw2float);

 riskwithoutinsurancew2 = aw2*(1+gammaw2* (bw2float / betafloat));
 riskwithinsurancew2 = aw2*(1+mw2/aw2);

 Appendix Page 61

 aw3 = qw3float*bw3float; //average cost of the bonus

 mw3 = ew3float - aw3; //cost of the premium minus the average cost of the bonus
equals excess cost added to the premium by the insurance company

 gammaw3 = mw3 * (sfloat + (aw3))/ (aw3*bw3float);

 riskwithoutinsurancew3 = aw3*(1+gammaw3* (bw3float / betafloat));
 riskwithinsurancew3 = aw3*(1+mw3/aw3);

 aw4 = qw4float*bw4float; //average cost of the bonus

 mw4 = ew4float - aw4; //cost of the premium minus the average cost of the bonus
equals excess cost added to the premium by the insurance company

 gammaw4 = mw4 * (sfloat + (aw4))/ (aw4*bw4float);

 riskwithoutinsurancew4 = aw4*(1+gammaw4* (bw4float / betafloat));
 riskwithinsurancew4 = aw4*(1+mw4/aw4);

 aw5 = qw5float*bw5float; //average cost of the bonus

 mw5 = ew5float - aw5; //cost of the premium minus the average cost of the bonus
equals excess cost added to the premium by the insurance company

 gammaw5 = mw5 * (sfloat + (aw5))/ (aw5*bw5float);

 riskwithoutinsurancew5 = aw5*(1+gammaw5* (bw5float / betafloat));
 riskwithinsurancew5 = aw5*(1+mw5/aw5);

 aw6 = qw6float*bw6float; //average cost of the bonus

 mw6 = ew6float - aw6; //cost of the premium minus the average cost of the bonus
equals excess cost added to the premium by the insurance company

 gammaw6 = mw6 * (sfloat + (aw6))/ (aw6*bw6float);

 riskwithoutinsurancew6 = aw6*(1+gammaw6* (bw6float / betafloat));
 riskwithinsurancew6 = aw6*(1+mw6/aw6);

 aw7 = qw7float*bw7float; //average cost of the bonus

 mw7 = ew7float - aw7; //cost of the premium minus the average cost of the bonus
equals excess cost added to the premium by the insurance company

 gammaw7 = mw7 * (sfloat + (aw7))/ (aw7*bw7float);

 riskwithoutinsurancew7 = aw7*(1+gammaw7* (bw7float / betafloat));
 riskwithinsurancew7 = aw7*(1+mw7/aw7);

 aw8 = qw8float*bw8float; //average cost of the bonus

 mw8 = ew8float - aw8; //cost of the premium minus the average cost of the bonus
equals excess cost added to the premium by the insurance company

 gammaw8 = mw8 * (sfloat + (aw8))/ (aw8*bw8float);

 riskwithoutinsurancew8 = aw8*(1+gammaw8* (bw8float / betafloat));
 riskwithinsurancew8 = aw8*(1+mw8/aw8);

 aw9 = qw9float*bw9float; //average cost of the bonus

 mw9 = ew9float - aw9; //cost of the premium minus the average cost of the bonus
equals excess cost added to the premium by the insurance company

 gammaw9 = mw9 * (sfloat + (aw9))/ (aw9*bw9float);

 riskwithoutinsurancew9 = aw9*(1+gammaw9* (bw9float / betafloat));
 riskwithinsurancew9 = aw9*(1+mw9/aw9);

 aw10 = qw10float*bw10float; //average cost of the bonus

 mw10 = ew10float - aw10; //cost of the premium minus the average cost of the bonus
equals excess cost added to the premium by the insurance company

 gammaw10 = mw10 * (sfloat + (aw10))/ (aw10*bw10float);

 riskwithoutinsurancew10 = aw10*(1+gammaw10* (bw10float / betafloat));
 riskwithinsurancew10 = aw10*(1+mw10/aw10);

 aw11 = qw11float*bw11float; //average cost of the bonus

 mw11 = ew11float - aw11; //cost of the premium minus the average cost of the bonus
equals excess cost added to the premium by the insurance company

 gammaw11 = mw11 * (sfloat + (aw11))/ (aw11*bw11float);

 riskwithoutinsurancew11 = aw11*(1+gammaw11* (bw11float / betafloat));
 riskwithinsurancew11 = aw11*(1+mw11/aw11);

 aw12 = qw12float*bw12float; //average cost of the bonus

 mw12 = ew12float - aw12; //cost of the premium minus the average cost of the bonus
equals excess cost added to the premium by the insurance company

 gammaw12 = mw12 * (sfloat + (aw12))/ (aw12*bw12float);

 riskwithoutinsurancew12 = aw12*(1+gammaw12* (bw12float / betafloat));
 riskwithinsurancew12 = aw12*(1+mw12/aw12);

 aw13 = qw13float*bw13float; //average cost of the bonus

 mw13 = ew13float - aw13; //cost of the premium minus the average cost of the bonus
equals excess cost added to the premium by the insurance company

 gammaw13 = mw13 * (sfloat + (aw13))/ (aw13*bw13float);

 riskwithoutinsurancew13 = aw13*(1+gammaw13* (bw13float / betafloat));
 riskwithinsurancew13 = aw13*(1+mw13/aw13);

 aw14 = qw14float*bw14float; //average cost of the bonus

 mw14 = ew14float - aw14; //cost of the premium minus the average cost of the bonus
equals excess cost added to the premium by the insurance company

 gammaw14 = mw14 * (sfloat + (aw14))/ (aw14*bw14float);

 riskwithoutinsurancew14 = aw14*(1+gammaw14* (bw14float / betafloat));
 riskwithinsurancew14 = aw14*(1+mw14/aw14);

 aw15 = qw15float*bw15float; //average cost of the bonus

 mw15 = ew15float - aw15; //cost of the premium minus the average cost of the bonus
equals excess cost added to the premium by the insurance company

 gammaw15 = mw15 * (sfloat + (aw15))/ (aw15*bw15float);

 riskwithoutinsurancew15 = aw15*(1+gammaw15* (bw15float / betafloat));
 riskwithinsurancew15 = aw15*(1+mw15/aw15);

 aw16 = qw16float*bw16float; //average cost of the bonus

 mw16 = ew16float - aw16; //cost of the premium minus the average cost of the bonus
equals excess cost added to the premium by the insurance company

 gammaw16 = mw16 * (sfloat + (aw16))/ (aw16*bw16float);

 riskwithoutinsurancew16 = aw16*(1+gammaw16* (bw16float / betafloat));
 riskwithinsurancew16 = aw16*(1+mw16/aw16);

 aw17 = qw17float*bw17float; //average cost of the bonus

 mw17 = ew17float - aw17; //cost of the premium minus the average cost of the bonus
equals excess cost added to the premium by the insurance company

 gammaw17 = mw17 * (sfloat + (aw17))/ (aw17*bw17float);

 riskwithoutinsurancew17 = aw17*(1+gammaw17* (bw17float / betafloat));

 Appendix Page 64

 riskwithinsurancew17 = aw17*(1+mw17/aw17);

 aw18 = qw18float*bw18float; //average cost of the bonus

 mw18 = ew18float - aw18; //cost of the premium minus the average cost of the bonus
equals excess cost added to the premium by the insurance company

 gammaw18 = mw18 * (sfloat + (aw18))/ (aw18*bw18float);

 riskwithoutinsurancew18 = aw18*(1+gammaw18* (bw18float / betafloat));
 riskwithinsurancew18 = aw18*(1+mw18/aw18);

 aw19 = qw19float*bw19float; //average cost of the bonus

 mw19 = ew19float - aw19; //cost of the premium minus the average cost of the bonus
equals excess cost added to the premium by the insurance company

 gammaw19 = mw19 * (sfloat + (aw19))/ (aw19*bw19float);

 riskwithoutinsurancew19 = aw19*(1+gammaw19* (bw19float / betafloat));
 riskwithinsurancew19 = aw19*(1+mw19/aw19);

 aw20 = qw20float*bw20float; //average cost of the bonus

 mw20 = ew20float - aw20; //cost of the premium minus the average cost of the bonus
equals excess cost added to the premium by the insurance company

 gammaw20 = mw20 * (sfloat + (aw20))/ (aw20*bw20float);

 riskwithoutinsurancew20 = aw20*(1+gammaw20* (bw20float / betafloat));
 riskwithinsurancew20 = aw20*(1+mw20/aw20);

 //Calculate risk differences for men

 riskdifferencem1 =
(riskwithoutinsurancem1-riskwithinsurancem1)/riskwithoutinsurancem1*100;
 riskdifferencem2 =

(riskwithoutinsurancem2-riskwithinsurancem2)/riskwithoutinsurancem2*100;
 riskdifferencem3 =

(riskwithoutinsurancem3-riskwithinsurancem3)/riskwithoutinsurancem3*100;
 riskdifferencem4 =

(riskwithoutinsurancem4-riskwithinsurancem4)/riskwithoutinsurancem4*100;
 riskdifferencem5 =

(riskwithoutinsurancem5-riskwithinsurancem5)/riskwithoutinsurancem5*100;
 riskdifferencem6 =

(riskwithoutinsurancem6-riskwithinsurancem6)/riskwithoutinsurancem6*100;
 riskdifferencem7 =

(riskwithoutinsurancem7-riskwithinsurancem7)/riskwithoutinsurancem7*100;
 riskdifferencem8 =

(riskwithoutinsurancem8-riskwithinsurancem8)/riskwithoutinsurancem8*100;

 riskdifferencem9 =
(riskwithoutinsurancem9-riskwithinsurancem9)/riskwithoutinsurancem9*100;
 riskdifferencem10 =
(riskwithoutinsurancem10-riskwithinsurancem10)/riskwithoutinsurancem10*100;
 riskdifferencem11 =
(riskwithoutinsurancem11-riskwithinsurancem11)/riskwithoutinsurancem11*100;
 riskdifferencem12 =
(riskwithoutinsurancem12-riskwithinsurancem12)/riskwithoutinsurancem12*100;
 riskdifferencem13 =
(riskwithoutinsurancem13-riskwithinsurancem13)/riskwithoutinsurancem13*100;
 riskdifferencem14 =
(riskwithoutinsurancem14-riskwithinsurancem14)/riskwithoutinsurancem14*100;
 riskdifferencem15 =
(riskwithoutinsurancem15-riskwithinsurancem15)/riskwithoutinsurancem15*100;
 riskdifferencem16 =
(riskwithoutinsurancem16-riskwithinsurancem16)/riskwithoutinsurancem16*100;
 riskdifferencem17 =

(riskwithoutinsurancem17-riskwithinsurancem17)/riskwithoutinsurancem17*100;
 riskdifferencem18 =
(riskwithoutinsurancem18-riskwithinsurancem18)/riskwithoutinsurancem18*100;
 riskdifferencem19 =
(riskwithoutinsurancem19-riskwithinsurancem19)/riskwithoutinsurancem19*100;
 riskdifferencem20 =
(riskwithoutinsurancem20-riskwithinsurancem20)/riskwithoutinsurancem20*100;

 //Calculate risk differences for women

 riskdifferencew1 =
(riskwithoutinsurancew1-riskwithinsurancew1)/riskwithoutinsurancew1*100;
 riskdifferencew2 =

(riskwithoutinsurancew2-riskwithinsurancew2)/riskwithoutinsurancew2*100;
 riskdifferencew3 =

(riskwithoutinsurancew3-riskwithinsurancew3)/riskwithoutinsurancew3*100;
 riskdifferencew4 =

(riskwithoutinsurancew4-riskwithinsurancew4)/riskwithoutinsurancew4*100;
 riskdifferencew5 =

(riskwithoutinsurancew5-riskwithinsurancew5)/riskwithoutinsurancew5*100;
 riskdifferencew6 =

(riskwithoutinsurancew6-riskwithinsurancew6)/riskwithoutinsurancew6*100;
 riskdifferencew7 =

(riskwithoutinsurancew7-riskwithinsurancew7)/riskwithoutinsurancew7*100;
 riskdifferencew8 =

(riskwithoutinsurancew8-riskwithinsurancew8)/riskwithoutinsurancew8*100;
 riskdifferencew9 =

(riskwithoutinsurancew9-riskwithinsurancew9)/riskwithoutinsurancew9*100;
 riskdifferencew10 =

(riskwithoutinsurancew10-riskwithinsurancew10)/riskwithoutinsurancew10*100;
 riskdifferencew11 =
(riskwithoutinsurancew11-riskwithinsurancew11)/riskwithoutinsurancew11*100;
 riskdifferencew12 =
(riskwithoutinsurancew12-riskwithinsurancew12)/riskwithoutinsurancew12*100;
 riskdifferencew13 =
(riskwithoutinsurancew13-riskwithinsurancew13)/riskwithoutinsurancew13*100;

 riskdifferencew14 =
(riskwithoutinsurancew14-riskwithinsurancew14)/riskwithoutinsurancew14*100;
 riskdifferencew15 =
(riskwithoutinsurancew15-riskwithinsurancew15)/riskwithoutinsurancew15*100;
 riskdifferencew16 =
(riskwithoutinsurancew16-riskwithinsurancew16)/riskwithoutinsurancew16*100;
 riskdifferencew17 =
(riskwithoutinsurancew17-riskwithinsurancew17)/riskwithoutinsurancew17*100;
 riskdifferencew18 =
(riskwithoutinsurancew18-riskwithinsurancew18)/riskwithoutinsurancew18*100;
 riskdifferencew19 =
(riskwithoutinsurancew19-riskwithinsurancew19)/riskwithoutinsurancew19*100;
 riskdifferencew20 =
(riskwithoutinsurancew20-riskwithinsurancew20)/riskwithoutinsurancew20*100;

 //Create an array of the relative risks.

 NSArray *unsortedRiskDifferences = [NSArray arrayWithObjects: [NSNumber
numberWithFloat:riskdifferencem1],[NSNumber
numberWithFloat:riskdifferencem2],[NSNumber
numberWithFloat:riskdifferencem3],[NSNumber
numberWithFloat:riskdifferencem4],[NSNumber
numberWithFloat:riskdifferencem5],[NSNumber
numberWithFloat:riskdifferencem6],[NSNumber
numberWithFloat:riskdifferencem7],[NSNumber
numberWithFloat:riskdifferencem8],[NSNumber
numberWithFloat:riskdifferencem9],[NSNumber
numberWithFloat:riskdifferencem10],[NSNumber
numberWithFloat:riskdifferencem11],[NSNumber
numberWithFloat:riskdifferencem12],[NSNumber
numberWithFloat:riskdifferencem13],[NSNumber
numberWithFloat:riskdifferencem14],[NSNumber
numberWithFloat:riskdifferencem15],[NSNumber
numberWithFloat:riskdifferencem16],[NSNumber
numberWithFloat:riskdifferencem17],[NSNumber
numberWithFloat:riskdifferencem18],[NSNumber
numberWithFloat:riskdifferencem19],[NSNumber
numberWithFloat:riskdifferencem20],[NSNumber
numberWithFloat:riskdifferencew1],[NSNumber
numberWithFloat:riskdifferencew2],[NSNumber
numberWithFloat:riskdifferencew3],[NSNumber
numberWithFloat:riskdifferencew4],[NSNumber
numberWithFloat:riskdifferencew5],[NSNumber
numberWithFloat:riskdifferencew6],[NSNumber
numberWithFloat:riskdifferencew7],[NSNumber
numberWithFloat:riskdifferencew8],[NSNumber
numberWithFloat:riskdifferencew9],[NSNumber
numberWithFloat:riskdifferencew10],[NSNumber
numberWithFloat:riskdifferencew11],[NSNumber
numberWithFloat:riskdifferencew12],[NSNumber
numberWithFloat:riskdifferencew13],[NSNumber
numberWithFloat:riskdifferencew14],[NSNumber

numberWithFloat:riskdifferencew15],[NSNumber
numberWithFloat:riskdifferencew16],[NSNumber
numberWithFloat:riskdifferencew17],[NSNumber
numberWithFloat:riskdifferencew18],[NSNumber
numberWithFloat:riskdifferencew19],[NSNumber numberWithFloat:riskdifferencew20], nil];

 NSArray *sortedRiskDifferencesInverted = [NSArray arrayWithObjects: [NSNumber
numberWithFloat:riskdifferencem1],[NSNumber
numberWithFloat:riskdifferencem2],[NSNumber
numberWithFloat:riskdifferencem3],[NSNumber
numberWithFloat:riskdifferencem4],[NSNumber
numberWithFloat:riskdifferencem5],[NSNumber
numberWithFloat:riskdifferencem6],[NSNumber
numberWithFloat:riskdifferencem7],[NSNumber
numberWithFloat:riskdifferencem8],[NSNumber
numberWithFloat:riskdifferencem9],[NSNumber
numberWithFloat:riskdifferencem10],[NSNumber
numberWithFloat:riskdifferencem11],[NSNumber
numberWithFloat:riskdifferencem12],[NSNumber
numberWithFloat:riskdifferencem13],[NSNumber
numberWithFloat:riskdifferencem14],[NSNumber
numberWithFloat:riskdifferencem15],[NSNumber
numberWithFloat:riskdifferencem16],[NSNumber
numberWithFloat:riskdifferencem17],[NSNumber
numberWithFloat:riskdifferencem18],[NSNumber
numberWithFloat:riskdifferencem19],[NSNumber
numberWithFloat:riskdifferencem20],[NSNumber
numberWithFloat:riskdifferencew1],[NSNumber
numberWithFloat:riskdifferencew2],[NSNumber
numberWithFloat:riskdifferencew3],[NSNumber
numberWithFloat:riskdifferencew4],[NSNumber
numberWithFloat:riskdifferencew5],[NSNumber
numberWithFloat:riskdifferencew6],[NSNumber
numberWithFloat:riskdifferencew7],[NSNumber
numberWithFloat:riskdifferencew8],[NSNumber
numberWithFloat:riskdifferencew9],[NSNumber
numberWithFloat:riskdifferencew10],[NSNumber
numberWithFloat:riskdifferencew11],[NSNumber
numberWithFloat:riskdifferencew12],[NSNumber
numberWithFloat:riskdifferencew13],[NSNumber
numberWithFloat:riskdifferencew14],[NSNumber
numberWithFloat:riskdifferencew15],[NSNumber
numberWithFloat:riskdifferencew16],[NSNumber
numberWithFloat:riskdifferencew17],[NSNumber
numberWithFloat:riskdifferencew18],[NSNumber
numberWithFloat:riskdifferencew19],[NSNumber numberWithFloat:riskdifferencew20], nil];

 sortedRiskDifferencesInverted = [sortedRiskDifferencesInverted
sortedArrayUsingSelector:@selector(compare:)]; //Sort the "sorted" array so that it is
actually sorted. However, the @selector(compare:) function sorts in ascending order,
while we want the array sorted in descending order. We therefore reverse the sort
order below:

 NSArray *sortedRiskDifferences = [[sortedRiskDifferencesInverted
reverseObjectEnumerator]allObjects]; //Reverse the order of the objects in the array
so it is sorted from highest to lowest

 NSArray *unsortedInsuranceRisks = [NSArray arrayWithObjects: [NSNumber
numberWithFloat:riskwithinsurancem1],[NSNumber
numberWithFloat:riskwithinsurancem2],[NSNumber
numberWithFloat:riskwithinsurancem3],[NSNumber
numberWithFloat:riskwithinsurancem4],[NSNumber
numberWithFloat:riskwithinsurancem5],[NSNumber
numberWithFloat:riskwithinsurancem6],[NSNumber
numberWithFloat:riskwithinsurancem7],[NSNumber
numberWithFloat:riskwithinsurancem8],[NSNumber
numberWithFloat:riskwithinsurancem9],[NSNumber
numberWithFloat:riskwithinsurancem10],[NSNumber
numberWithFloat:riskwithinsurancem11],[NSNumber
numberWithFloat:riskwithinsurancem12],[NSNumber
numberWithFloat:riskwithinsurancem13],[NSNumber
numberWithFloat:riskwithinsurancem14],[NSNumber
numberWithFloat:riskwithinsurancem15],[NSNumber
numberWithFloat:riskwithinsurancem16],[NSNumber
numberWithFloat:riskwithinsurancem17],[NSNumber
numberWithFloat:riskwithinsurancem18],[NSNumber
numberWithFloat:riskwithinsurancem19],[NSNumber
numberWithFloat:riskwithinsurancem20],[NSNumber
numberWithFloat:riskwithinsurancew1],[NSNumber
numberWithFloat:riskwithinsurancew2],[NSNumber
numberWithFloat:riskwithinsurancew3],[NSNumber
numberWithFloat:riskwithinsurancew4],[NSNumber
numberWithFloat:riskwithinsurancew5],[NSNumber
numberWithFloat:riskwithinsurancew6],[NSNumber
numberWithFloat:riskwithinsurancew7],[NSNumber
numberWithFloat:riskwithinsurancew8],[NSNumber
numberWithFloat:riskwithinsurancew9],[NSNumber
numberWithFloat:riskwithinsurancew10],[NSNumber
numberWithFloat:riskwithinsurancew11],[NSNumber
numberWithFloat:riskwithinsurancew12],[NSNumber
numberWithFloat:riskwithinsurancew13],[NSNumber
numberWithFloat:riskwithinsurancew14],[NSNumber
numberWithFloat:riskwithinsurancew15],[NSNumber
numberWithFloat:riskwithinsurancew16],[NSNumber
numberWithFloat:riskwithinsurancew17],[NSNumber
numberWithFloat:riskwithinsurancew18],[NSNumber
numberWithFloat:riskwithinsurancew19],[NSNumber
numberWithFloat:riskwithinsurancew20],nil];

 NSMutableArray *sortedInsuranceRisks = [[NSMutableArray alloc]
initWithCapacity:0];

 NSMutableArray *finalDecisions = [[NSMutableArray alloc] initWithCapacity:0];

 for(int q=0; q<40; q++) {

 //Assume insurance should not be purchased for all 40 events unless otherwise
determined in the future (especially because some events simply may not be held, so
insurance should only be recommended if the event definitely will be held in the first
place and definitely makes sense economically to insure)

 [finalDecisions addObject:[NSNumber numberWithBool:NO]];
 }

 float currentSortedDifferenceValue;
 float currentUnsortedDifferenceValue;

 for(int i=0; i<=39; i++) { //Determine whether the risk with insurance is greater
than that without. After this for loop, the next for loop will determine, for those
events where the insurance risk is lower, whether it makes sense to buy the insurance
given budget constraints.

 currentSortedDifferenceValue = [sortedRiskDifferences[i] floatValue];

 if (currentSortedDifferenceValue > 0) { //It might make sense to purchase
insurance; this event remains viable

 for (int j=0; j<40; j++) {//We have sorted the events by risk difference,
essentially putting them in random order. We look for a match against the original
risk difference array (ordered by men's 1, men's 2, men's 3...women's 20 rather than
by risk value) to determine where the event we are examining originally stood (this is
the j-value).

 currentUnsortedDifferenceValue = [unsortedRiskDifferences[j]
floatValue];

 if (currentUnsortedDifferenceValue != currentSortedDifferenceValue) {

 //The program did not find a match; try again

 }

 else {
 [sortedInsuranceRisks addObject:unsortedInsuranceRisks[j]]; //We

found the j-value, which is the standing in the original array for the event we are
looking at from the sorted array. We use this j-value to search the original insurance
risks array for the relevant risk, and then we add this risk to the new array we are
building, sortedInsuranceRisks.

 break;
 }

 }

 }

 }

 int arraySize = [sortedInsuranceRisks count]; //determine how many races are
currently viable for insurance (this returns a whole number, and we are assigning that
whole number to an integer, which causes some compilers to warn the programmer of a
loss of precision, but the loss of precision only applies in the other direction; that
is, putting an integer value into a whole number variable -- not putting a whole
number value into an integer variable).

 float disposableBudget;
 disposableBudget = betafloat - sfloat;

 float currentSortedRiskValue;
 float currentUnsortedRiskValue;

 for(int k=0; k<arraySize; k++) {

 if (disposableBudget > 0) { //if we start with extra disposable cash, check if
we can add another insurance policy

 disposableBudget = disposableBudget - [sortedInsuranceRisks[k] floatValue];

 if (disposableBudget > 0) { //if after adding the insurance policy, we
still have extra disposable cash, insure that race

 for (int n=0; n<40; n++) {

 currentSortedRiskValue = [sortedInsuranceRisks[k] floatValue];
 currentUnsortedRiskValue = [unsortedInsuranceRisks[n] floatValue];

 if (currentUnsortedRiskValue != currentSortedRiskValue) {//We
again try and find the appropriate value in the unsorted array; see explanation
further above

 //You did not find a match; try again

 }

 else {
 //Buy insurance for this event
 finalDecisions[n] = @YES;
 break;

 }

 }

 }

 else {

 //Although we started with disposable cash, adding the insurance
policy would give us negative capital levels. We will not insure that event because we
cannot afford to, but we do get to add the cost of that insurance premium back to the
disposable cash value, since we are not purchasing that insurance

 disposableBudget = disposableBudget + [sortedInsuranceRisks[k]
floatValue];

 }

 }

 }

 //The following code assembles and formats the results

 NSMutableString *results = [[NSMutableString alloc] initWithString:@""];

 int z = 0;

 while (z<20) {
 int eventNumber = z+1;

 float zCheckOne = (z+1)%2; //Checks whether there is a remainder or not when
the z-value is divided by 2 (the "%" operator gives the remainder of the first
expression divided by the second expression). This has the effect of checking whether
z is even or odd. We want two results per line, so we type a return (/n) after results
with even z, while just adding a few spaces after results with odd z. This gives us
two results per line.

 if (zCheckOne == 0) {

 if([finalDecisions[z] boolValue] == NO) {

 NSString *temporaryString = [NSString stringWithFormat:@"Men's Event %i:
DO NOT buy insurance.\n\n",eventNumber];

 [results appendString:temporaryString];
 }

 if([finalDecisions[z] boolValue] == YES) {

 NSString *temporaryString = [NSString stringWithFormat:@"Men's Event %i:
BUY insurance.\n\n",eventNumber];

 [results appendString:temporaryString];

 }

 }

 else {

 if([finalDecisions[z] boolValue] == NO) {

 NSString *temporaryString = [NSString stringWithFormat:@"Men's Event
%i: DO NOT buy insurance. ",eventNumber];

 [results appendString:temporaryString];
 }

 if([finalDecisions[z] boolValue] == YES) {

 NSString *temporaryString = [NSString stringWithFormat:@"Men's Event
%i: BUY insurance. ",eventNumber];

 [results appendString:temporaryString];

 }
 }

 z=z+1;
 }

 z=1;

 while (z<21) {

 float zCheckOne = (z+1)%2;

 if(zCheckOne == 0) {

 if([finalDecisions[z+19] boolValue] == NO) { //Add 19 to all the indices
of the array because all women's values are 20 spaces further along in the array than
the corresponding men's values. For example, men's event 1 has index [0], while
women's event 1 has index [20]

 NSString *temporaryString = [NSString stringWithFormat:@"Women's Event
%i: DO NOT buy insurance. ",z];

 [results appendString:temporaryString];
 }

 if([finalDecisions[z+19] boolValue] == YES) {
 NSString *temporaryString = [NSString stringWithFormat:@"Women's Event

%i: BUY insurance. ",z];
 [results appendString:temporaryString];

 }

 }

 else {

 if([finalDecisions[z+19] boolValue] == NO) {

 NSString *temporaryString = [NSString stringWithFormat:@"Women's Event %i:
DO NOT buy insurance.\n\n",z];

 [results appendString:temporaryString];
 }

 if([finalDecisions[z+19] boolValue] == YES) {
 NSString *temporaryString = [NSString stringWithFormat:@"Women's Event %i:

BUY insurance.\n\n",z];
 [results appendString:temporaryString];

 }

 }

 z = z+1;

 }

 //Display the results

 NSAlert *alert = [NSAlert alertWithMessageText: @"Results"
 defaultButton:@"OK"

 alternateButton:@"Cancel"
 otherButton:nil

 informativeTextWithFormat:@""];

 NSTextField *input = [[NSTextField alloc] initWithFrame:NSMakeRect(0, 0, 550,
650)];

 [input setStringValue:results];
 [alert setAccessoryView:input];
 [alert runModal];

}

- (IBAction)reset:(id) sender {

 [s setStringValue:@""];
 [s display];

 [beta setStringValue:@""];
 [beta display];

 [qm1 setStringValue:@""];
 [qm1 display];

 [qm2 setStringValue:@""];
 [qm2 display];

 [qm3 setStringValue:@""];
 [qm3 display];

 [qm4 setStringValue:@""];
 [qm4 display];

 [qm5 setStringValue:@""];
 [qm5 display];

 [qm6 setStringValue:@""];
 [qm6 display];

 [qm7 setStringValue:@""];
 [qm7 display];

 [qm8 setStringValue:@""];
 [qm8 display];

 [qm9 setStringValue:@""];
 [qm9 display];

 [qm10 setStringValue:@""];
 [qm10 display];

 [qm11 setStringValue:@""];
 [qm11 display];

 [qm12 setStringValue:@""];
 [qm12 display];

 [qm13 setStringValue:@""];
 [qm13 display];

 [qm14 setStringValue:@""];
 [qm14 display];

 [qm15 setStringValue:@""];
 [qm15 display];

 [qm16 setStringValue:@""];
 [qm16 display];

 [qm17 setStringValue:@""];
 [qm17 display];

 [qm18 setStringValue:@""];
 [qm18 display];

 [qm19 setStringValue:@""];
 [qm19 display];

 [qm20 setStringValue:@""];
 [qm20 display];

 [bm1 setStringValue:@""];
 [bm1 display];

 [bm2 setStringValue:@""];
 [bm2 display];

 [bm3 setStringValue:@""];
 [bm3 display];

 [bm4 setStringValue:@""];
 [bm4 display];

 [bm5 setStringValue:@""];
 [bm5 display];

 [bm6 setStringValue:@""];
 [bm6 display];

 [bm7 setStringValue:@""];
 [bm7 display];

 [bm8 setStringValue:@""];
 [bm8 display];

 [bm9 setStringValue:@""];
 [bm9 display];

 [bm10 setStringValue:@""];
 [bm10 display];

 [bm11 setStringValue:@""];
 [bm11 display];

 [bm12 setStringValue:@""];
 [bm12 display];

 [bm13 setStringValue:@""];
 [bm13 display];

 [bm14 setStringValue:@""];
 [bm14 display];

 [bm15 setStringValue:@""];
 [bm15 display];

 [bm16 setStringValue:@""];
 [bm16 display];

 [bm17 setStringValue:@""];
 [bm17 display];

 [bm18 setStringValue:@""];
 [bm18 display];

 [bm19 setStringValue:@""];
 [bm19 display];

 [bm20 setStringValue:@""];
 [bm20 display];

 [em1 setStringValue:@""];
 [em1 display];

 [em2 setStringValue:@""];
 [em2 display];

 [em3 setStringValue:@""];
 [em3 display];

 [em4 setStringValue:@""];
 [em4 display];

 [em5 setStringValue:@""];
 [em5 display];

 [em6 setStringValue:@""];
 [em6 display];

 [em7 setStringValue:@""];
 [em7 display];

 [em8 setStringValue:@""];
 [em8 display];

 [em9 setStringValue:@""];
 [em9 display];

 [em10 setStringValue:@""];
 [em10 display];

 [em11 setStringValue:@""];
 [em11 display];

 [em12 setStringValue:@""];
 [em12 display];

 [em13 setStringValue:@""];
 [em13 display];

 [em14 setStringValue:@""];
 [em14 display];

 [em15 setStringValue:@""];
 [em15 display];

 [em16 setStringValue:@""];
 [em16 display];

 [em17 setStringValue:@""];
 [em17 display];

 [em18 setStringValue:@""];
 [em18 display];

 [em19 setStringValue:@""];
 [em19 display];

 [em20 setStringValue:@""];
 [em20 display];

 [qw1 setStringValue:@""];
 [qw1 display];

 [qw2 setStringValue:@""];
 [qw2 display];

 [qw3 setStringValue:@""];
 [qw3 display];

 [qw4 setStringValue:@""];
 [qw4 display];

 [qw5 setStringValue:@""];
 [qw5 display];

 [qw6 setStringValue:@""];
 [qw6 display];

 [qw7 setStringValue:@""];
 [qw7 display];

 [qw8 setStringValue:@""];
 [qw8 display];

 [qw9 setStringValue:@""];
 [qw9 display];

 [qw10 setStringValue:@""];
 [qw10 display];

 [qw11 setStringValue:@""];
 [qw11 display];

 [qw12 setStringValue:@""];
 [qw12 display];

 [qw13 setStringValue:@""];
 [qw13 display];

 [qw14 setStringValue:@""];
 [qw14 display];

 [qw15 setStringValue:@""];
 [qw15 display];

 [qw16 setStringValue:@""];
 [qw16 display];

 [qw17 setStringValue:@""];
 [qw17 display];

 [qw18 setStringValue:@""];
 [qw18 display];

 [qw19 setStringValue:@""];
 [qw19 display];

 [qw20 setStringValue:@""];
 [qw20 display];

 [bw1 setStringValue:@""];
 [bw1 display];

 [bw2 setStringValue:@""];
 [bw2 display];

 [bw3 setStringValue:@""];
 [bw3 display];

 [bw4 setStringValue:@""];
 [bw4 display];

 [bw5 setStringValue:@""];
 [bw5 display];

 [bw6 setStringValue:@""];
 [bw6 display];

 [bw7 setStringValue:@""];
 [bw7 display];

 [bw8 setStringValue:@""];
 [bw8 display];

 [bw9 setStringValue:@""];
 [bw9 display];

 [bw10 setStringValue:@""];
 [bw10 display];

 [bw11 setStringValue:@""];

 [bw11 display];

 [bw12 setStringValue:@""];
 [bw12 display];

 [bw13 setStringValue:@""];
 [bw13 display];

 [bw14 setStringValue:@""];
 [bw14 display];

 [bw15 setStringValue:@""];
 [bw15 display];

 [bw16 setStringValue:@""];
 [bw16 display];

 [bw17 setStringValue:@""];
 [bw17 display];

 [bw18 setStringValue:@""];
 [bw18 display];

 [bw19 setStringValue:@""];
 [bw19 display];

 [bw20 setStringValue:@""];
 [bw20 display];

 [ew1 setStringValue:@""];
 [ew1 display];

 [ew2 setStringValue:@""];
 [ew2 display];

 [ew3 setStringValue:@""];
 [ew3 display];

 [ew4 setStringValue:@""];
 [ew4 display];

 [ew5 setStringValue:@""];
 [ew5 display];

 [ew6 setStringValue:@""];
 [ew6 display];

 [ew7 setStringValue:@""];
 [ew7 display];

 [ew8 setStringValue:@""];
 [ew8 display];

 [ew9 setStringValue:@""];
 [ew9 display];

 [ew10 setStringValue:@""];
 [ew10 display];

 [ew11 setStringValue:@""];
 [ew11 display];

 [ew12 setStringValue:@""];
 [ew12 display];

 [ew13 setStringValue:@""];
 [ew13 display];

 [ew14 setStringValue:@""];
 [ew14 display];

 [ew15 setStringValue:@""];
 [ew15 display];

 [ew16 setStringValue:@""];
 [ew16 display];

 [ew17 setStringValue:@""];
 [ew17 display];

 [ew18 setStringValue:@""];
 [ew18 display];

 [ew19 setStringValue:@""];
 [ew19 display];

 [ew20 setStringValue:@""];
 [ew20 display];

}
@end

Derivations

Question 3:

Derivation of m:
o = [(b - u) * q + m] * d = (b * q - u * q + m) * d = b * d * q - d * q * u - d * m

p = m - d * m + d * q * u - b * d * q
.102 * (b * q - q * u + m) = m - d * m + d * q * u - b * d * q

.102 * b * q - .102 * q * u + .102 * m = m - d * m + d * q * u - b * d * q
(.898 - d) * m = .102 * (b * q - q * u) + b * d * q - d * q * u

m = .898−d
(.102 + d) (b q−q u)* * *

