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Using a peak over threshold approach with the Generalised Pareto distribution
to project the breaking of world records in the near future

Summary Sheet

Extreme value theory is a branch of statistics that can be used to predict the occurrence of rare
events, such as extreme flooding, large insurance losses, crashing of the stock market, or human life
expectancy. Because a world record is an extreme event, we will use extreme value theory to predict
the probability of breaking the world record in the near future. Almost all mathematical models
aiming to predict ultimate world records are based on the development of the world record over
many years and extrapolating the trend to the future. It uses only a limited number of past world
records and therefore gives rather unreliable estimates and predictions. This is not the approach we
are taking. Instead, we utilise as many top performances of elite athletes in the last few years as
possible throughout various athletic events to predict the probability of breaking the world record in
the near future. Since our mathematical model is based on a large set of data in a short up-to-date
period of time, it is effective in predicting the probability of breaking a world record in the near
future. Therefore, using our model minimises the affect that factors such as technological
advancement, changes in training and anti-doping laws have on the probability of breaking a world
record, since it is based on data from a small period of time (three years). Our mathematical model
is inspired by the approach taken by Einmahl and Magnus (2008) in their paper “Records in Athletics
through Extreme Value Theory.

Our method involves collecting data from the official website of the International Association of
Athletics Federation (IAAF) for the three years prior to an event being held. This data is then ordered
from best to worst performance, and data points below a lower threshold are removed by the Peak
over threshold approach. This lower threshold is determined through comparing the worst
performance for each of the three years and selecting the ‘best’ of these (Einmahl & Magnus, 2008).
This data is then used to construct a probability density histogram giving the probability of an
athlete’s top performance being located within each score range ‘bin’. The Generalised Pareto
function is then fitted to the probability density histogram. This allows the trend seen in the data to
be extrapolated to estimate the probability of an athlete breaking the record in the following year.
We assume the worst-case scenario that if the record is broken within the following year, it will be
broken at the committee’s event. The binomial distribution is then used to factor in the number of
athletes competing in the event.

The resulting probability is then considered to be the probability that an athlete will break the world
record at the committee’s event. Through analysing IAAF data for multiple events, our team found
that there was a strong correlation between the calculated probability and the record being broken
(a probability greater than 3%) or remaining (a probability less than 3%).

Thus, an organising committee may use our method to calculate the probability of the world record
being broken at any one of their events and purchase insurance accordingly. Similarly, insurance
companies may also use the model to calculate the amount of money they should charge per event
in order to maximise profit.

As the model only relies on archived data, it may be tested by an organising committee or an
insurance company on years where the outcome is now known, allowing the validity of the model to
be confirmed for each event type before being used to a make a decision which will ultimately have
an impact on the organisation’s finances.
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Question 1: Calculating Average Cost

Amount of Bonus
Average Cost = —f
Number of times

25000
h n

Where n is the number of times the event is repeated before the record is broken.
From the above example, n = 25, and hence:

25000
25

Average Cost = $1000

Average Cost =

Question 2: Calculating the Cost of Insurance

The average cost that the insurance company charges the committee yearly exists to ensure that at a
minimum, they fully cover the amount of money that they have to pay out if a record is broken. In
this example, an average cost of $1000 is charged every year as the record is likely to be broken once
every 25 years and the fee for the world record breaker is $25 000.

However, an additional cost is added to the average cost so that the insurance company can make a
reasonable profit and cover all other added costs. If the insurance company is seeking to maximise
profit, there is a range of variables to consider involving supply and demand. However, if the
company utilises our model proposed in Q5, they can alter the additional cost such that they can
lower it in years where they know the record will likely not be broken. In lowering their cost for
these years, they will attract more subscribers. Yet, in using of our model they can also determine
when it is likely that the world record will be broken, and as a result can choose to raise their
additional cost to the point of ridiculousness that year, yet still below the $25 000 bonus. This will
either dissuade customers from insuring that year, where the record will likely be broken (meaning
the insurance company avoids paying out), or alternatively if a committee still chooses to insure and
pay their extravagant additional costs, the insurance company minimises the otherwise huge loss
that they could have potentially made charging their normal additional cost.

Question 3: Determining Whether Insurance Should Be Purchased

(a):

The most important variables that the committee must consider is the current quality of their pool
and the number of athletes racing. Through the application of our model outlined in question 5, the
quality of the current pool (reflected by the estimated probability of the current pool breaking the
WR), can be compared to the quality of pools which did or did not break the world record. The
number of athletes competing in their event can then be factored in through a binomial distribution
to culminate in a projected percentage probability of the record being broken at the committee’s

event. Ultimately this probability can then be compared to the probability prior to previous
successes and failures to assess the need to purchase insurance for any given event. Through the
analysis of three separate events, outlined in question 5, we found that a percentage probability of
3% or greater indicates that the likelihood of the WR being broken is high, meaning insurance should
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be purchased. If the estimated percentage probability is less than 3%, it is unlikely that the world
record will be broken and insurance should not be purchased.

(b):

On years where the model from question 5 has been applied and there is a significant probability of
the world record being broken (as outlined by the model's decision making scheme), insurance
should be taken out. On years where the probability is insignificant, insurance should not be taken
out. Based on the assumption that the model's prediction is accurate, when the world record is
broken, the organising committee only has to pay for the cost of insurance. This means that the total
amount payed by the organising committee is less than if they always took out insurance or always
self-insured.

Question 4: Application of the Model to Various Events

An issue the committee will face is the variability in the probability of a world record being broken
between certain event types. For example, the image to the left shows the progression of the Mens’
100m world record since 1988, and illustrates that the record was broke repeatedly and regularly up
until 2009. The image on the right displays that the world record for long jump has been stagnant
since the 1960’s and has not been broken for over two decades.
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The question then remains, how can this variability in probability between events be accounted for
in a general mathematical model?

The difficulty of breaking the world record for each event is reflected by the probability calculated by
the model as it compares the distribution of results from the current pool (participants from the past
three years) to the current world record, and hence variation between events is of no consequence.

As a result, each type of event is treated uniquely by the fundamental operation of the model and
hence by simply applying the model our team has constructed, the committee faces no issue in
distinction between events. In terms of weighting our factors, our model places complete weight on
the quality of the current pool, which is then compared to the quality of past pools when the WR
either was or was not achieved.
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Question 5: Mathematical Model

Introduction

Extreme value theory is a branch of statistics that can be used to predict the occurrence of rare
events, such as extreme flood, large insurance losses, stock market crash, human life expectancy and
record breaking. Because a world record is an extreme event, we will use extreme value theory to
predict the probability of breaking the world record in the near future. Almost all mathematical
models aiming to predict ultimate world records are based on the development of the world record
over many years and extrapolating the trend to the future. It uses only a limited number of past
world records and therefore gives rather unreliable estimates and predictions. This is not the
approach we are taking. Instead, we utilise as many top performances of elite athletes as possible in
the last few years leading up to an event throughout various athletic events to predict the
probability of breaking the world record in the near future. Since our mathematical model is based
on a large set of data in a short up-to-date period of time, it is effective in predicting the probability
of breaking a world record in the near future. Therefore, our model minimises the affect that factors
such as technological advancement, development in training practices and anti-doping laws have on
the probability of breaking a world record, since it is expected that these factors do not alter
significantly in a short period of time. Our mathematical model is inspired by the approach taken by
Einmahl and Magnus (2008) in their paper “Records in Athletics through Extreme Value Theory”.

The following model produces a probability of a world record being broken at a specific event. The
model utilises data from the three years prior to the event in order to estimate the probability that
the world record will be broken at that event. Our team has applied this model to multiple events
from the past decade to find a correlation between the estimated probability and the actual
outcome. Based on the percentage range observed, the team has created a general decision-making
scheme to decide whether or not insurance should be purchased based upon the calculated
percentage probability. By following the method outlined below, a committee can calculate the
probability that a World Record (WR) will be broken at each of their events and can thus determine
whether or not insurance should be purchased on an event-by-event basis.

When using this model it is important to ensure that the addressed variables may be accurately
determined possibly a month or longer before the event itself. As a result we have chosen to
disregard the effects of weather in our model as it is near-impossible to precisely predict
precipitation and humidity a month or longer prior to an event. Using data compiled over the
previous 3 years to determine the comparative quality of the pool of athletes is much more accurate
and reliable than relying on an unpredictable variables such as weather.



Page 5, Team #2016004

STAGE 1: Data Collection

The data collected on the best performance of top athletes will be ordered from best to worst, and
only the data beyond a certain threshold will be selected for analysis. This is known as the peak over

threshold approach and is one of the two approaches taken in extreme value theory.

1.

w

Obtain the data on the best performance of top athletes from the official website of the
International Association of Athletics Federation (IAAF) in the Top Lists for the past 3 years.
We use the data from the 3 years prior to the year being investigated in order to obtain a
large sample which is still considered current, allowing for reliable estimations and
predictions to be made.

Collate the data into a spreadsheet such as the most commonly used Microsoft Excel.
Order the data from best performance to worst performance for each of the three years.
Running events are measured by using time. Thus, the lower the time, the better the
performance. To avoid estimation problems of the parameters and solve this discrepancy,
convert running times to average speed by dividing the total distance by the time taken to
cover the distance. No conversion is required for other events where better performances
result in higher raw scores.

Compare the worst performances across the 3 years of data and use the best of these 3
worst performances as the threshold, deleting any data points with worse performance than
this threshold. This is the peak over threshold approach which is one of the two approaches
used in extreme value theory. This ensures that there are no ‘holes’ in data. In other words,
if we didn’t do this, then we might have missed a whole set of data that we cannot obtain
ranging between the worst performance of one year and the worst performance of another
year.

Combine the data for the 3 years into the same columns and order the data from the best
performance to the worst performance.

Use the column of athlete names to remove entries where the same athlete has another
entry with a higher score (due to participation in multiple years). If using Microsoft Excel, the
‘Remove Duplicates’ function is applicable as is it will remove entries lower down in the list
first. As the data has been ordered in the previous step, only the top performance for each
athlete is retained, as is required.

It is a requirement in extreme value theory that the data points are individually and
identically distributed (i.i.d.). Thus, an athlete’s performance (in this case his best
performance in the last 3 years leading up to an event) can only appear once.

For some events (such as the 100m), data will occur in clusters because of the limited
precision of measurement devices such as stopwatches. Because these clusters can cause
problems in estimation, the data for these events needs to be ‘smoothed’ out.

For example, suppose ‘n’ top athletes run a personal best of 9.80 seconds in the 100m. This

occurs not because the actual times are exactly the same, but because the electronic

stopwatch is accurate to 0.01 of a second. We need to smooth these n results over the

interval (9.795, 9.805) by:

2j—1
2n

d; = 9.795 + 0.01 X
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For understanding purposes, outlined below is a step-by-step example determining the probability
of breaking the world record in a 10,000 Metre Men'’s athletic event in 2005 assuming the
participants are the top athletes in the world that are most likely in the sample of data taken from
IAAF.

1. Go to IAAF Top Lists and collect data for 10,000 Metres Best by Athlete from years 2002,
2003 and 2004. This data is the best personal performance of the top athletes between 2002
and 2004 in the 10,000 Metres Men category.
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2. Collate the obtained data into a spreadsheet such as the commonly used Microsoft Excel.
The data is already ordered from the best performance (lowest time) to the worst
performance (greatest time) for each of the three years.

A B C i} E F G H | | K

2002 Mark Competitor 2003 Mark Competitor 2004 Mark Competitar
26:49.4 Sammy Kipketer Cheruiyot 26:29.2 Haile Gebrselassie 26:20.3 Kenenisa Bekele
26:49.9 Assefa Mezgebu 26:30.0 Nicholas Kemboi 26:39.7 Sileshi Sihine
26:50,2 Richard Kipkemei Limo 26:38.8 Ahmad Hassan Abdullah 26:41.6 Haile Gebrselassie
26:50.7 Ahmad Hassan Abdullah 26:49.6 Kenenisa Bekele 26:53.7 Gebregziabher Gebremariam
26:52.9 John Cheruiyot Korir 26:56.6 Richard Kipkemei Limo 26:59.5 Ahmad Hassan Abdullah
27:05.9 Patrick Mutuku Ivuti 26:58.8 Sileshi Sihine 26:59.9 Charles Waweru Kamathi
27:06.2 John Yuda Msuri 27:09.8 John Yuda Msuri 27:02,0 Mark Bett Kipkinyer

27:20.2 Mebrahtom Keflezighi
27:25.6 Gebregziabher Gebremariam
27:26.1 Sileshi Sihine

27:26.3 Kamiel Maase

27:35.0 Paul Biwott

27:35.1 José Rios

27:13.4 Sammy Kipketer Cheruiyot
27:13.7 Moses Cheruiyot Mosop
27:14.6 Dejene Berhanu

27:15.9 Boniface Toroitich Kiprop
27:17.2 John Cheruiyot Korir

27:21.6 Paul Kosgei Malakwen

27:03.6 Sammy Kipketer Cheruiyot
27:04.0 Boniface Toroitich Kiprap
27:05.1 lohn Cheruiyot Korir
27:07.3 Moses Ndiema Masai
27:09.6 Richard Kipkemei Lima
27:17.1 Nicholas Kemboi

3. Since the 10,000 Metre is a running event, it is measured using time. Consequently, a lower
time is required to break the record. To ensure that a higher value is required to break the
record, this time needs to be converted to average speed using the formula:

total distance

A Speed =
verage opee total time
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4. Compare the worst performances across the three years of data and use the best of these

7.

three worst performances as the lower threshold. This ensures that there are no ‘holes’ in
data.

From the screenshot above, we are comparing the worst performances of the data sets of
the each of the 3 years. The best performance of these three worst performances is used as
the threshold. In this case, Ridha El Amri’s average speed of 5.81531 m/s is the used LOWER
THRESHOLD. All the worse performances (slower average speeds) than this lower threshold
are removed from the data sets. In the above image, the deleted data points that fall short
of the lower threshold are highlighted in red.

In 2003, there might have been a lower average speed than that of Ridha El Amri (5.81531
m/s) which is the worst performance of the data set for 2003, but at the same time greater
than that of the worst performance of one or both of the other years. If we haven’t used the
best of the worst times as the lower threshold, it could have led to ‘holes’ in the overall
data, therefore interfering with the data analysis.

Combine the data from the three years into the same columns and order the data from the
best performance (greatest average speed) to the worst performance (lowest average
speed).

Once the data has been ordered from best performance to worst performance, remove all
the athletes that appear more than once leaving only their best performance. This fulfils the
requirement of extreme value theory that all data points are individually and identically
distributed. B -

I
—-

In the case of the 10,000 Metre event, the data is not clustered as the precision limitations
of the stopwatches do not pose a significant problem as there is a greater range of time
values. Therefore, there is no need to ‘smooth’ the data in this case.
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STAGE 2: DATA ANALYSIS (with EasyFit) and GENERALISED PARETO DISTRIBUTION

In our model, we use the peak over threshold (POT) method to consider the distribution of
exceedances over a certain threshold. We are interested in estimating the cumulative distribution
function of F(x) of random variables X above a certain threshold u.

The distribution function Fu is called the conditional excess distribution function
Fuly) =P(X - u| X>u),

where X is a random variable, u is a given threshold and X-u is any random data point exceeding the
threshold u minus the threshold u

Applying this to our model,

e Xisthe best performance of any athlete (or even more generally anyone) in a specific
athletic event in the past 3 years

e yisthe best performance value out of the 3 worst performance values of top athletes in the
data set taken from IAAF in each of the years

e  X-uis all the best performances of an athlete in the past 3 years exceeding the threshold
performance minus the threshold performance.

At this point extreme value theory (EVT) can prove very helpful as it provides us with a powerful
result about the conditional excess distribution function which is stated in the following theorem:

For a large class of underlying distribution functions F the conditional excess distribution function
Fu(y), for u large, is well approximated by

Fu(y) = Ggs(y), u— ©

where
-1

Geo(y) = 1‘(“%”)E ife#0

X
l—eo ife=0

where y = X-u, the exceedances over the threshold
andO0<sy<xF—u if§=0

and 0<y<-0¢ ifE<0.

(Pickands (1975), Balkema and de Haan (1974))

(Gilli, & Kellezi, 2006)

Gglc(y) is the called the Generalised Pareto distribution (GPD) with 2 parameters

1. Shape parameter €
2. Scale parameter c”.
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Using all the best performances of top athletes for the past 3 years exceeding the LOWER
THRESHOLD established earlier, we can utilise the Generalised Pareto distribution to predict the
probability of breaking the world record in the year in a specific athletic event following the 3 years
for which data has been collected.

Because of the tedious process of estimating the parameters of the Generalised Pareto distribution,
our model utilises the program EasyFit that can be downloaded from the website
http://www.mathwave.com/ to estimate these parameters based on the data and fit a probability
density curve. It also runs three Goodness of Fit tests: Kolmogorov-Smirnov, Anderson Darling and
Chi-Squared. Based on the Kolmogorov-Smirnov goodness of fit tests for several different data sets
from different athletic events, we have found that the Generalised Pareto distribution is ranked
almost always in the top 3 best fits with a good fit, which is expected since we are using a peak over
threshold approach.

For understanding purposes, outlined below is a step-by-step EXAMPLE for analysing the data using
EasyFit software to project the probability of breaking the world record in a 10,000 Metre Men’s
athletic event in 2005 assuming the participants are the top athletes in the world that are most likely
in the sample of data taken from IAAF.

1. Copy the X-u column in Excel and paste it into the first column of Easy Fit

B C B EasyFit (Evaluation Version) - Untitled - [Table1)

Competitor Average Speed [ B Onshes Serons Jook
Kenenisa Bekele 6.32787 ] e o B O 21 VO SO R -
Haile Gebrselassie 6.292395011} 0. - =l =

Nicholas Kemboi 6.289189512 k= F‘L:l, [Tabed § | g: f}iggg?g;gggﬁ?g
Ahmad Hassan Abdullah 6.254847507 a | D.a73BB3627058014
Sileshi Sihine 6.25121 = bl
Sammy Kipketer Cheruiyot 6.213572929 z | D.39\V26704361 5308
Assefa Mezgebu 6.211565936 g 1 g: ggﬁfgggggﬁgﬁg'ﬁi
Richard Kipkemnei Limo 6.210408645 :? g: x::f;zg;?;;?g;
John Cheruiyot Korir 6.200127723 1z | D.357800360242033
Gebregziabher Gebremariam 6.19682 : 3 | g: g:ggggggggggg:g
Charles Waweru Kamathi 6.17311 15 | 03352095281 02069
Mark Bett Kipkinyor 6.16523 12| 0. 3c0e00zestote 7
Boniface Toroitich Kiprop 6.15764 18 | o SOS OoaootEae.
Patrick Mutuku Ivuti 6.150515413 ;g I g: 23?23?3@333323
John Yuda Msuri 6.149418572 I pthmeioe 4
Moses Ndiema Masai 6.14519}| 23 | D.273122448020535
Moses Cheruiyot Mosop 6.121224735 g; 1 3_ 2;5;;"9;} ségiéf;
Dejene Berhanu 6.117667211 23 | g: ;2:2223232173;3;
Mebrahtom Keflezighi 6.097003323}0. zg | D.zasae3835811077
Paul Kosgei Malakwen 6.091766369/C | O Sasasmnanszecon

M
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2. Highlight all the data in the column, click on the ‘Analyse’ tab and choose ‘Fit Distributions’.
EasyFit will fit many different distributions to the provided data ranking the distributions
from the best fit to the worst fit by running several goodness of fit tests. It is expected for
the generalised Pareto distribution (abbreviated to Gen. Pareto by EasyFit) to be among the
best fits to the data. Indeed, for our example used, the generalised Pareto distribution is the
best fit.

84 Fite Edit

Descriptive Statistics

Fit Distributions... F9

View _analyze' Options Tools Window

3 Data Tables 303

=1 [T ablel 304

) Results 305

0.00240205433@469
000189441 2759099
0.007 488363264291
000101471050 72
0.00098088111 0165
0.00094705211841 77
0.000676434324193
000064 26088

0.

Distribution

B Beta

Burr

Burr (4P)
Cauchy
Chi-Squared
Dagum

Dagum (4P)
Erlang

Erlang (3P)
Error

Error Function
Exponential
Exponential (2P)
Fatigue Life
Fatigue Life (3P)
Frechet

Frachet (3P)
Gamma

Gamma (3P)
Gen. Extreme Value
Gan. Gamma
Gen. Gamma (4P)

Smirnov
Statistic | Rank
0.06448 9
0.10405 25
0.05307 3
0.20284 43
0.67539 55
0.27302 49
0.05815 6
0.1439 26
0.08156 19
0.1933 4z
1 57
0.62522 53
0.05953 7
0.14727 3z
0.07514 15
0.09763 24
0.08786 @ 22
0.14637 29
0.05804 5
0.07394 14
X 58
13

0.0721

Darling
Statistic Rank
1.8966 11
96,432 50
0.89807 2
21.117 41
166.58 54
70.96 48
5.616 24
10.827 28
24737 14
14.507 a9
/A
144,62 | 52
1.3066 ]
10.904 30
1.523 9
44817 | 21
2.6672 17
11.025 | 31
0.99701 4
3.1222 19
MNfA
8

Chi-Squared

Statistsc Rank

22.614 10
N/A
17.833 3
80.181 | 40
5065.8 48
248.22 | 45
N/A
46.269 | 28
26.208 13
70.786 | 39
N/A
B093.4 49
21.192 7
45.94 27
24.527 | 12
31.338 18
34.047 | 20
46.418 29
15.305 1
30.314 17
N/A

22.577 9

From the screenshot above, the generalised Pareto distribution for our example used is the best fit
according to both the Kolmogorov-Smirnov and the Anderson Darling goodness of fit tests. We
suggest that the committee base the goodness of fit of the Kolmogorov Smirnov test. The rank can
be checked by going to the ‘Goodness of Fit’ tab and clicking ‘Kolmogorov Smirnov’ to give the rank
in ascending order.

| Gien Paseto |1
Webud

Johmaon SB

Ex

(Graphs  Summary  Goodness of Fit

Probability Density Function

1ix)

s

02 024 028
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This is the probability density function of the data used for our example. The green line is the
generalised Pareto distribution fit for the probability density.
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This is the cumulative distribution function and the green line is the generalised Pareto function fit.

To view the probability density function select the f (lower case) at the top and to view the
cumulative distribution function select F (upper case) at the top.

Note: In the process of fitting the generalised Pareto distribution, EasyFit estimates the two
parameters £ and o and graphs the fit based on these estimates. This saves the committee from
performing tedious mathematics to find the estimates themselves.

3. Once the generalised Pareto distribution is fitted
a. Right-click on ‘Gen. Pareto’ and select ‘Stat Assist’
Select the ‘Probabilities’ tab
Click on ‘Delimiters’ on the right hand side of the page
Click on ‘None’
Select ‘One Delimiter’
Calculate the World Record value minus the threshold value (make sure to convert it
average speed for a running evet)
g. In ‘X1’ type in the calculated value for World Record minus threshold value
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P(X>X1) gives the probability of a randomly selected top athlete from our large data set will break
the World Record in an event based on his best performance in the last 3 years. Rephrasing for our
example used, what is the probability of a top athlete in 10,000 metre event from our data set
getting a higher average speed for the event than the average speed for the event in the Word
Record.

P(X<X1) gives the probability of a randomly selected top athlete from our large data set will NOT
break the World Record in an event based on his best performance in the last 3 years.

For our example of the 10,000 Metre Men event, we know for certain that within the 2002-2004
period, the WR set in 2005 had not yet been achieved. However, using the generalised Pareto
distribution fitted by EasyFit and Stat Assist, we can project the probability that a single top athlete
in this event, based on his best performance between 2002 and 2004, has to break the World
Record.

Probabilties
PX<X1) (099721

RESULT = 0.00279=0.279%

P(X=X1) |0
P(X>X1) (000273

The result obtained above is the projected probability of a top athlete in the 10,000 metre men
event based on his best performance between 2002 and 2004, breaking the world record at the
time, provided his best performance is at the event the committee is organising.

Now that we have calculated this probability of a single athlete breaking the record in his best
performance, we will assume worst case scenario and use this probability as the probability of the
athlete breaking the record at OUR event.
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Stage 3: Binomial Distribution

In stage 2 we were able to extrapolate based on a comprehensive data set, and calculate an
estimate of the probability that a given top athlete’s best performance through 2005, which we
assume occurs at our event, breaks the world record.

We then use a binomial distribution to factor in the number of athletes competing in the event to
calculate the probability that the record is broken at the event.

A Binomial Distribution is a series which occurs when a Bernoulli Trial is repeated ‘n’ times.
Notice our situation can be modelled as a Binomial Distribution with:

e Probability of a ‘Success’ = Probability estimate calculated in STAGE 2 = 0.279%
e Number of Trials = Number of Athletes competing in the committee’s event

Number correct
4

v

For example, the diagram on the right
represents an event with 4 competitors,
where a tick means they broke the WR while
a cross means they failed to. Notice the only
situation in which the WR was not broken is
the bottom progression with 4 failures. To
further generalise this, in a binomial
distribution of any number athletes, the only
situation in which the WR is not broken is
when all ‘n’ athletes fail to achieve the
needed result. Therefore, for a race with ‘n’
athletes:
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Probability of WR being broken at our Event =1 — (1 — Pyyccess)™

where Psyccess = the probability that a given top athlete will break the world
record

and ‘n’ = the number of athletes competing

In this walkthrough we have considered the years 2002-2004 in anticipation of the 2005 Memorial
Van Damme athletics event, in particular the 10km race. We have calculated Psyccess = 0.279%, and we
know that in our event 19 competitors will compete.

Probability of WR being broken at our Event = 1 — (1 — 0.00279)*°
= 0.0517
=517%

Using the above formula we see the probability that the record will be broken at our event is 5.17%.
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Stage 4: Interpreting the Estimated Probabilities

At this point the committee now has a means to estimate the probability that a world record shall be

broken during any one of their events. This applies to the 15km event as well as to each of the 40

track and field events.

Yet, a raw probability of occurrence still is not useful, as how does one decide at what probability

insurance must or must not be purchased? For example, in our previous walkthrough how would the

committee know if 5.17% is a probability worth of insurance or not?

This is where our research can now be applied. After applying our model repeatedly to multiple past

events, a noticeable correlation between the estimated percentage probability calculated by our
model, and the actual result the following year arose. So how was this correlation established?

- Our team trialled the model twice for three different events (200m, 5km, 10km).

- The first trial was upon the 3 years leading up to a year where we knew the record WAS

broken.

- The second trial was upon the 3 years leading up to a year where we knew the record WAS

NOT broken.

- For each trial we recorded our estimated percentage probability, and noticed that the
estimates garnered before a successful year formed a distinct group as opposed to the
estimates garnered before a failed year.

- From this correlation we were able to create a percentage range where the committee can
input their own calculated percentage and determine whether or not insurance is necessary.

Interpretation of the Example

For example, the walkthrough provided in
stages 1-3 is an example of a test for a
SUCCESSFUL year. Our researchers knew that
at the 2005 Memorial Van Damme Athletics
Event in Belgium, the 10km World Record
was broken by Kenenisa Bekele. Therefore,
the estimated probability of the world record
being broken in this event based off our data
from 2002-2004 (calculated to be 5.17%), is
recorded and categorised as a WR breaking
probability.

However, we also required a non-WR
breaking probability for the 10km event, and

hence chose to apply our model to 2014, a year where the record was not broken. The exact same

RESULTS
Place

Athlete

Nationality

Time

process was used, with data from 2011-2013 analysed, plotted, fitted, extrapolated and manipulated

to produce an estimated probability of the WR being broken in 2014. The probability of this was

0.87%, and was recorded as a non — WR breaking probability. This was the process that was applied
to the 10km Mens’ Running event. We then proceeded to evaluate both a WR breaking probability
and a non — WR breaking probability for various other events, recording our results.
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Correlation Between the Estimated Outcome and Actual Outcome

EVENT SUCCESS FAIL
10km Mens 5.17% 0.870%
5km Mens 5.98% 1.25%
200m Mens 11.6% 0.00432%

From analysis of these events, it is clear that for an estimated probability above 5% the world record
will likely be broken in the following year, however if the probability is below 1% it is unlikely that
the record will be broken. If a value between 5% and 1.5% is obtained by a committee, values above
or equal to 3% should be rounded up to 5% and values below 3% should be rounded down to 1%.

Therefore, if the calculated probability is above or equal to 3%, it is likely that the world record will
be broken and the committee should purchase insurance, however if the probability is below 3%, it
is unlikely that the world record will be broken and insurance should not be purchased.

Advantages and Limitations of the Model

The method used to determine whether the world record will be broken has various advantages and
disadvantages.

A limitation of the model is that for some events (such as long jump) where the world record has not
been broken for a significant amount of time, records are not provided on the main IAAF website for
the three years prior to the record being broken. This means that records would need to be obtained
either from archived IAAF data or from a different source, where it may be presented in an alternate
format. This increases the difficulty in collating and analysing the data for a year where the record
was broken when attempting to compare the probability of the world record being broken prior to
its actual historical occurrence and prior to the current event.

An advantage of our model is that it is able to produce a percentage probability which our team has
found to correlate heavily with the actual occurrences and non-occurrences of the world record
being broken. This probability is based on a sample of current top athletes which should be a fair
representation of the athletes participating in the event.

Furthermore, our method may be applied to previous years where the outcome is now known (as
we have shown above), meaning the model’s validity and the decision-making scheme can be tested
for each event before it is used to determine whether or not insurance should be purchased.
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